

Overview on coherent elastic neutrino nucleus scattering at reactor site

Janina Hakenmüller

AAP conference, Aachen, 28th of October

Coherent elastic neutrino nucleus scattering (CEvNS)

- standard model interaction, flavor blind, no energy threshold
- predicted in 1974: D.Z. Freedmann, Phys. Rev. 9 (1974) 5
- first detected in 2017: COHERENT experiment
 → CsI detector at pion decay-at-rest source
- detection at nuclear reactor (lower v energies) still pending
- cross section large compared to other neutrino interactions (e.g inverse beta decay)

 $\frac{d\sigma}{d\Omega} = \frac{G_f^2}{16\pi^2} (N - (1 - 4\sin^2\theta_W)Z)^2 E_{\nu}^2 (1 + \cos\theta) F(Q^2)$

nucleus

nuclear form factor $F(Q^2) \rightarrow 1$ for $Q^2 \rightarrow 0$

coherence condition:

 λ (mom. transfer Q) > size of atom => $\sigma \sim (\#$ scatter targets)²

 \rightarrow upper limit on neutrino energy:

$$E_{\nu} \leq \frac{1}{2R_A} \approx \frac{197}{2.5\sqrt[3]{A}} \quad (MeV)$$

E_{max}≤50 MeV (for medium A)

Neutrino sources

accelerator neutrinos a.u. 100 150 200 250 300 0 neutrino energy (MeV) D. Akimov et al., Science 10.1126/science.aao0990,

radioactive decay, solar neutrinos, supernovea, nuclear reactor, spallation source

2017

Motivation

- stellar collapse: 99% energy released in neutrinos
 - → burst modeling
 - \rightarrow detect on Earth

Efremenko, Yu, and William Raphael Hix. JPCS, Vol. 173. No. 1. IOP Publishing, 2009.

First strong hint this summer!

XenonNT 2.7 σ , arXiv:2408.02877 PandaX 2.6 σ , arXiv:2407.10892 4 / 23

Akimov, D., et al. "Physical Review Letters 129.8 (2022): 081801.

Motivation neutron form factor F(Q²)

Weinberg angle at low energies

$$\frac{d\sigma}{d\Omega} \propto (N - (1 - 4\sin^2\theta_W)Z)^2$$

Talk: B. Ryan 29th of Oct., finding trafficked nuclear materials with CEvNS

Detecting CEvNS

D. Akimov et al., Science 10.1126/science.aao0990, 2017

6/23

 ν_{α}

 ν_{α}

First detection of CEvNS (COHERENT)

Talk: more on COHERENT 30th of Oct.

CEvNS cross section

 N^2 dependence \leftrightarrow test of standard model physics

$\textbf{Comparison} \ \pi \textbf{DAR} \ \textbf{to} \ \textbf{reactor}$

Figure courtesy of A. Bonhomme

- Neutrino flux: total same distance ~10⁶ higher at reactor
 - **Neutrino energies** → recoil energies
 - => form factor: ~1 at reactor, <1 at spallation sources
 - => threshold requirements e.g. for HPGe:

<< 0.5 keV at reactor, < ~10 keV at spallation sources

• Background:

shallow overburden => shield (+ muon veto) spallation source: pulsed, additional suppression $O(10^4)$ reactor: only sparse outages \rightarrow excellent shield needed

Reactor CEvNS around the world

Neutrino flux at reactor site

11/23

*values reported by experiments

Background mitigation

reactor-correlated

- fission neutrons \rightarrow recoils like CEvNS
- high-energetic gamma-rays from reactor, cooling cycle or neutron capture

=> close to reactor core site characterization necessary! => adapt shield design Example: CONUS shield 10 cm 25 cm Pb

borated PE

muon-induced

CEvNS detectors

Quenching:

Quenching factor: Q=E(meas)/E_{nuclear recoil}
 e.g. HPGe: 1keV recoil → ~20% ionization (read-out), ~80% phonons (not read-out)

=> often not (yet) well known at low recoil energies for CEvNS
=> major uncertainty for some technologies, quenching measurements!

13 / 23

Neutrino flux at reactor site

^{*}values reported by experiments

High-purity Ge spectrometer

ionization energy mass: O(1 kg) rec. thr.: O(1 keV_{nr}) quenching: yes

HPGe at reactor site

Cryo noble liquids

- two-phase gas emission detectors
- Target fiducial volume:
 - RED-100 100 kg liquid Xe
 - RELICS: 32 kg liquid Xe (planned)
- RED-100: Akimov D. Y., et al. JINST 17.11 (2022), T11011 threshold: 4. photoelectrons $\leftrightarrow \sim 0.5 \text{ keV}_{nr}$

Below: huge single electron noise bkg \rightarrow reduction in analysis, ML first result: 63-94x SM (prelim.)

https://indico.particle.mephi.ru/event/436/contributions/ 4291/attachments/2490/4615/ICPPA2024 RED100.pdf

+ NUXE

tank

~7 m

Bolometers/cryogenic calorimeters

- recoil-incuded temperature change
- cryogenic temperatures in mK range \rightarrow large setups \rightarrow practical constraints
- vibration migration important
- RICOCHET: CryoCube (Ge, ionization + heat), Q-Array (Zn, heat) ~> O(100 eV,)
- NUCLEUS: crystal Al₂O₃, CaWO₄ + transition edge sensor (TES) ~> O(10 eV_n)

nu/cleus

commissioning at TUM, 2025 deployment at Chooz

Chooz reactor, France, 72/102 m

Two 3x3 matrices of target 1215362/contribution: detectors Talk: M. del Gallo 30th of Oct.

https://indico.cern.ch/event/ 1215362/contributions/5299993/ heat, heat + ionization mass: O(1-100 g) rec. thr.: O(10-100 eV_{nr}) quenching: no

research reactor 58 MW ILL, France, 8.8 m

RICOCHET 2023: 30eV_{ee} resolution shown for CryoCube 2024:

commissioning at ILL 2025: start of data taking planned

progress in low energy

CryoCube[~]

Talk: N. Dombrowski 29th of Oct.

+ MINER

Scintillating crystals and R&D

encapsulation: up to 22 NPE/keV excellent background level aimed threshold: 5 NPE $\rightarrow \sim 0.2 \text{ keV}_{pe}$

reactor data since May 2021 total mass 6 crystals: 12.5 kg

Eur.Phys.J.C 83 (2023) 3, 226

PALEOCCENE: recoil traces in materials, passive color center detectors, potential for directionality Talk: G. Rodrigues-Araujo 29th of Oct.

no reactor site (yet)

potential for directionality!

+ lots of R&D: SBC, gaseous Xe TPCs,...

Summary

CEvNS=interaction of the neutrino with the nucleus as a whole signature= tiny recoil of the neutrino hit by the nucleus \rightarrow quenching first observation 2017 at SNS by COHERENT, two more detections \rightarrow precision test of SM, neutrino fog, supernovae, nuclear form factor, Weinberg anlge, NSI, light mediators, reactor monitoring,....

Multitude of efforts to detect reactor CEvNS! relationship: mass ↔ threshold HPGe (4 efforst): CONUS <2x SM

 \rightarrow upgrades: lower threshold, new reactors CCDs (3 efforts): CONNIE <66x SM

 \rightarrow upgrades: more exposure for skipper CCDs two phase liquid Xe (2 efforts): RED-100 <63-94x SM

→ upgrade: Xe to LAr (single PE background) heat detection/bolometers (2 efforts): commissioning phase + scintillating crystals, proportional counter, gaseous TPCs, R&D for directionality,...

Thank you for your attention!

antineutrino spectrum dN/dE [1/MeV] 0.6 - 0.0 0.5 - 0.0 0.4 - 0.5 - 0.0 0.4 - 0.3 - 0.0 0.2 - 0.0 1 - 0.1 - **CONUS run-5**

Get all

of the neutrinos!

Ethr=210 eV

20