Overview of Applications & Global Projects

Yan-Jie Schnellbach

RWTH Aachen University

schnellbach@nvd.rwth-aachen.de

Applied Antineutrino Physics 2024 | Aachen | 28th October 2024

Introduction: Antineutrino Applications

- Majority of antineutrino applications intertwined with main source:
 - Nuclear facilities & devices
- Cooperative reactor monitoring safeguards
- Submarine monitoring verification
- Long-range reactor discovery surveillance
- Spent fuel monitoring safeguards, re-verification
- Precision spectral measurements
 - nuclear data

2

Neutrino communication - ???

Introduction: Antineutrino Applications

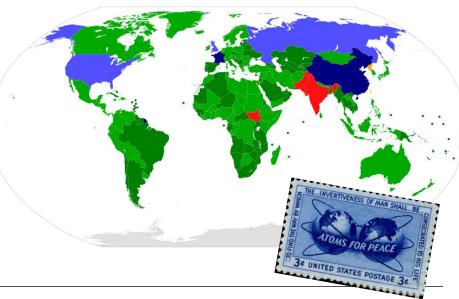
- Majority of antineutrino applications intertwined with main source:
 - Nuclear facilities & devices
- Cooperative reactor monitoring safeguards
- Submarine monitoring verification
- Long-range reactor discovery surveillance
- Spent fuel monitoring safeguards, re-verification
- Precision spectral measurements
 - nuclear data

3

Neutrino communication - ???

Overview of Applications & Global Projects Applied Antineutrino Physics 2024 | Aachen | 28th October 2024 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

🖗 Nu Tools

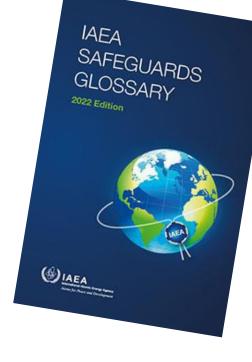

ergy and Security

Safeguards: Non-Proliferation of Nuclear Weapons

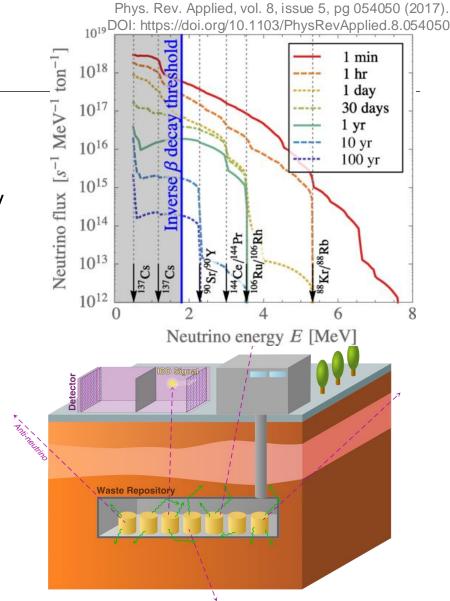
- Main obstacle for obtaining nuclear weapons:
 - Acquiring enough fissile material
 - Main isotopes of interest: ²³⁵U, ²³³U, ²³⁹Pu, ²⁴¹Pu
 - Low/no natural abundance
- Safeguards: accountancy of special nuclear materials + maintaining continuity of knowledge (CoK)
 - Detect diversion of "significant quantity" (SQ) in timely fashion
- Usually cooperative fulfilling NPT treaty obligations

Safeguards, Verification & Near-field Monitoring

- Using combination of principles:
 - Design information verification (DIV) of facilities
 - Nuclear material accountancy using non-destructive analysis (NDA) and destructive analysis (DA)
 - Containment and surveillance (C/S) to maintain CoK after initial accountancy
 - Unattended/remote monitoring information without inspector access
- Near-field antineutrino detectors as safeguards: mainly C/S, but overlap with NDA and remote monitoring:
 - Measurement of reactor power
 - Verification of reactor burn-up
 - Monitoring of spent fuel / 90Sr


5

Also: "nuclear renaissance" – SMRs, advanced reactors etc.



Spent Nuclear Fuel Monitoring

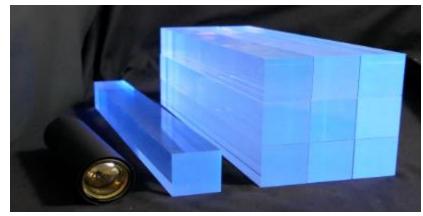
- Spent Nuclear Fuel (SNF) produced in large amounts by power plants
 - C. 300,000 t in storage
 - Yearly discharge of c 7,000 t per year
- Monitoring for safeguards + environmental
- Challenging signature: ⁹⁰Sr main isotope
 - Endpoint at 2.2 MeV close to IBD threshold

Brdar, V. and Huber, P. and Kopp, J., "Antineutrino Monitoring of Spent Nuclear Fuel",

Nuclear Databases

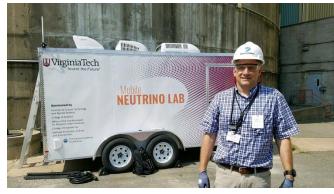
- Several IAEA meetings on antineutrino spectra
 - Technical meetings on input to nuclear databases
 - Meetings in 2019, 2023 and next year
- Near-field measurements are maturing
 - High statistics from larger experiments (e.g. Double Chooz)
 - Turning into precision physics
- Various spectral anomalies still observed
 - Interest in understanding these

IAEA	INDC(NDS)-0786 Distr. G, EN, ND
INDC International Nuclear	
Antineutrino spectra and	their applications
Summary of the Techn IAEA Headquarters, Vie 23-26 April 20	ical Meeting
Prepared by	
M. Fallot Laboratoure SUBATECH-Univ Nantes, France	ersity of Nantes
B. Littlejohn Illimois Institute of Tech Chicago, USA	nology
P. Dimitriou IAEA Vienna, Austria	
July 2019	
IAEA Nuclear Data Sectional Vienna International Centre, P.O. Box 100, 1	n 400 Vienne i



Surface Detection (Near-field) - < 1km

- Predominant technologies:
 - Plastic scintillator
 - Liquid scintillator
 - Some form of segmentation (2D/3D)
 - Many: doping (e.g. Gd or ⁶Li)
 - Many: some form of particle ID capability (e.g. PSD)
 - Veto capability against cosmics
- Application-focussed R&D:
 - Many have deployed prototypes at reactors
 - Aiming at tonne-scale devices
 - Goal of most projects: advance technological readiness
 - Improved burn-up determination
 - Control backgrounds & systematics
 - Improve fence distance

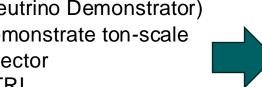


MiniCHANDLER - 80 kg

- Solid plastic scintillator
- Deployed at North Anna . **Nuclear Generating Station**

ROADSTR - 100 kg

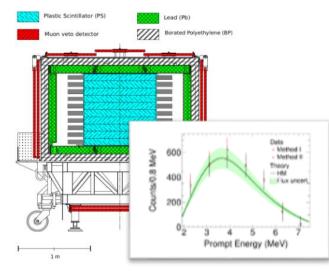
- Technology testbed
- Neutron characterisation


MAD

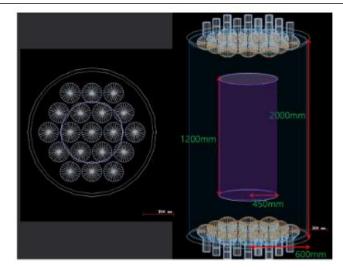
(Mobile Antineutrino Demonstrator)

- Goal to demonstrate ton-scale mobile detector
- Advance TRL ٠ Talk by E. Bernard on Wednesday

PROSPECT – 3.6t Liquid scintillator Deployed at HFIR Talk by M. Mendenhall on



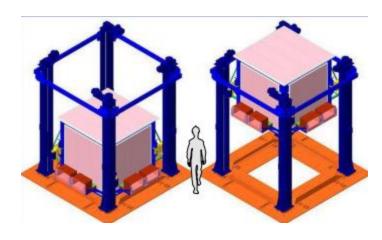
ISMRAN (Indian Scintillator Matrix for Reactor Anti-Neutrino)


- Plastic scintillator + Gd
- Deployed at DHRUVA 100 MWth research reactor
- Preliminary energy spectra measured

10

VIDARR

- Plastic scintillator + Gd
- Previously deployed at Wylfa Nuclear Power Plant
- Upgraded and currently at Sellafield – ⁹⁰Sr monitoring


RENE (Reactor Experiment for Neutrino and Exotics)

- Collaboration founded Nov 2022
- Liquid scintillator-based Talk by B. Yang on Wednesday

DANSS (Detector AntiNeutrino based on Solid Scintillator)

- Plastic scintillator + Gd
- Deployed at Kalinin Nuclear Power Plant (4x 3.1 GWth PWR)
- Long-running data taking since '16

Talk by I. Alekseev on Wednesday

11

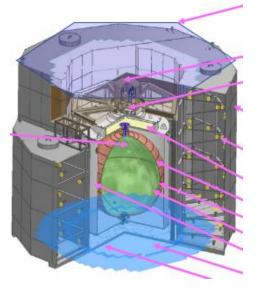
ANGRA Neutrino Experiment

Water + Gd (Cherenkov)

nuclear power plant

Talk by E. Kemp on Wednesday

Analysis


Deployed at Angra dos Reis

Recently performed ON/OFF

(4 PMTs)

Target detector (32 PMTs)

Lateral veto (4 PMTs)

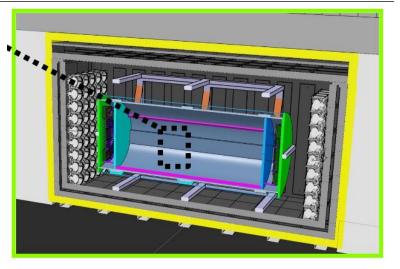
TAO (Taishan Antineutrino Observatory)

- Liquid scintillator + Gd
- Cooled to -50 C
- Near Taishan 1 reactor (4.6 GWth)
 Talk by H. Steiger on Wednesday

Overview of Applications & Global Projects Applied Antineutrino Physics 2024 | Aachen | 28th October 2024 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de Nuclear V and Disar

III. Physikalisches Institut B

NEOS-II (Neutrino Experiment for Oscillation at SBL)


- Gd-loaded LS (LAB-based)
- Deployed at Hanbit-5 reactor (2.8 GWth) tendon gallery
- Results are being finalised

12

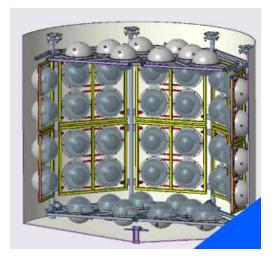
Neutrino 4+

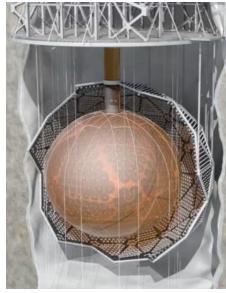
- Gd-loaded LS
- Deployed at Reactor SM-3 (90 MWth HEU research reactor)
- Upgrade to Neutrino 4
- Data collection expected end of this year ('24)

CLOUD (Chooz LiquidO Ultranear Detector)

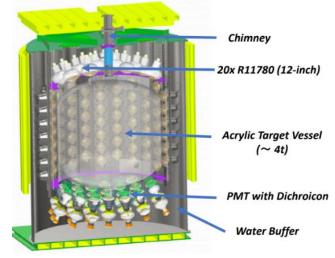
- Novel opaque scintillator
- AntiMatter-OTech Project
- Technology still in R&D phase
- Proposal to be deployed at Chooz w/ 10k IBD events/day

Far-field Reactor Monitoring – 10-100s km


- Comes in two safeguard-adjacent flavours:
 - Surveillance usually across borders
 - Cooperative monitoring verification & science diplomacy
- Technically, great challenges:
 - Long baseline low signal due to distance
 - Neutrino oscillations have significant impact on rate
 - Require large and/or underground detector geological restrictions on locations
- Large physics detectors effectively prototypes


Large-scale / Underground Detectors

BUTTON (Boulby Underground Testbed Towards Observing Neutrinos)


- 30t Cherenkov detector
- Testbed for kt-scale tank
- Testbed for different media
- Testbed for detector R&D Talk by D. Bhattcharya on Tuesday

14

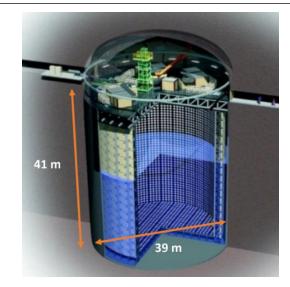
SNO+ (Sudbury Neutrino Observator)

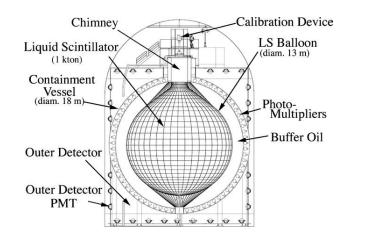
- Kton-scale water/liquid scintillator detector
- Long baseline measurement of CANDU reactors
 Talk by W. Parker on Wednesday

EOS / THEIA

- 4t water-based LS
- Testbed for scaling technologies (media, fast PMTs etc)
- Path towards THEIA (25/100 kt detectors)

Talk by H. Steiger on Wednesday




Large-scale / Underground Detectors

SuperK-Gd

15

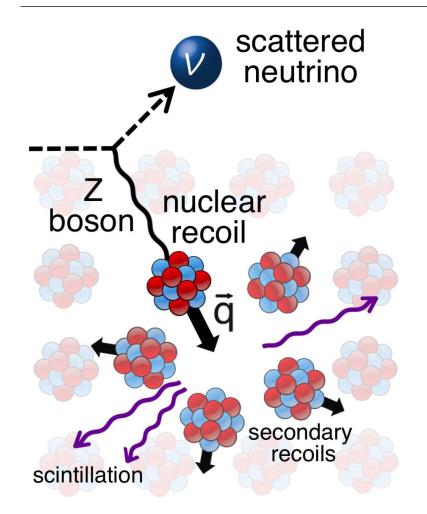
- 50 kton Cherenkov detector
- Since 2020: added Gd
- Enhanced sensitivity to reactor neutrinos + supernova neutrinos
 Talk by R. Rogly on Wednesday

KamLAND-Zen

- 1 kton LS detector
- Saw Japanese reactors in early 2000s
- KamLAND-Zen for double beta decay search + future upgrades

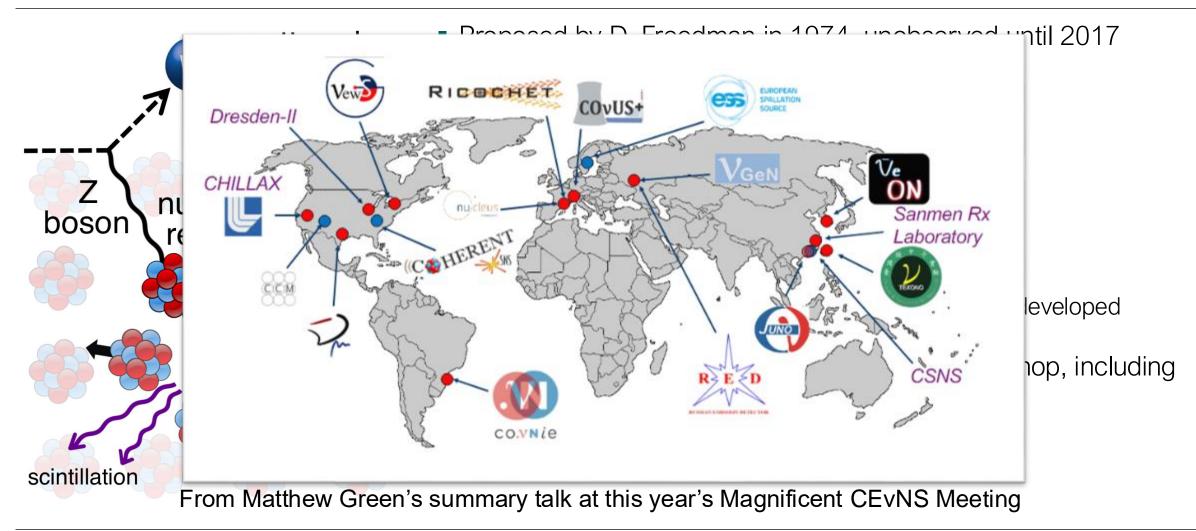
Talk by K. Weerman on Wednesday

Ocean Bottom Detector


- 20 kg LS prototype planned
- Future scale-up to kton-scale detector
- Goal: geoneutrino
- Also important R&D for underwater deployment
 Talk by D. Morita on Wednesday

Coherent Elastic Neutrino-Nucleus Scattering: CEvNS

16


- Proposed by D. Freedman in 1974, unobserved until 2017
- Large cross-section
 - Allows smaller detectors
 - No IBD threshold
 - Lots of interesting ideas for applications
- But: small recoil energy hard to detect!
- Very active field
 - Many active experiments
 - New technologies / detection approaches are being developed
- Will have seven talks on CEvNS during this workshop, including
 - RICOCHET, CONUS+ on Tuesday
 - COHERENT, NUCLEUS on Wednesday

Coherent Elastic Neutrino-Nucleus Scattering: CEvNS

Overview of Applications & Global Projects Applied Antineutrino Physics 2024 | Aachen | 28th October 2024 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

- Safeguards still most interesting applications
- Near-field monitoring projects are maturing
 - Stronger focus on application-led R&D
 - Improved background estimation and systematics
- Increased engagement with nuclear data community
- Far-field-capable experiments
 - Still driven by fundamental physics experiments
- CEvNS is a young but very active area with great potential

