Antineutrino Safeguards for Spent Nuclear Fuel

Yan-Jie Schnellbach¹, Irmgard Niemeyer², Stefan Roth¹, and Malte Göttsche¹ ¹RWTH Aachen, ²FZ Jülich

schnellbach@nvd.rwth-aachen.de

Applied Antineutrino Physics Workshop 2024 | Aachen | 28th October 2024

Introduction: Safeguards & Spent Nuclear Fuel

- Fissile material (e.g. ²³⁵U, ²³³U, Pu): safeguards
 - Timely detection of (clandestine) diversion of fissile material
 - Applied by IAEA, Non-Proliferation Treaty (NPT): **legal obligation** to declare material
- Spent Nuclear Fuel (SNF) produced by reactors
 - Total global SNF: ~300,000 t HM* + ~7,000 t HM annually
 - Mostly ²³⁸U (93-96%), but also: <1% ²³⁵U, ~1% Pu
 - \rightarrow interim storage & final disposal subject to safeguards
- Discharged SNF after refuelling goes to:
 - Spent fuel ponds (several years), Interim storage facilities (several decades) or reprocessing, geological repository (none yet – Onkalo starting '25, ~100 years operation)

Fuel assembly containing SNF being loaded into a cask https://www.gns.de/language=de/21562/behaelterbeladung

Safeguarding Spent Nuclear Fuel

- Even without operating reactors:
 - Decades to centuries of actively managing SNF
- Current safeguards often rely on Continuity of Knowledge (CoK)
 - Nuclear material accountancy

3

- Containment/Surveillance (C/S)
- Design information verification (DIV)
- Declarations verified by regular inspections

Material	In SNF
²³⁸ U	93-96%
235U	<1%
Fission fragments (e.g. ⁹⁰ Sr)	3-5%
Pu	~1%
Minor actinides	<1%

Antineutrino Safeguards at Spent Nuclear Fuel Applied Antineutrino Physics Workshop 2024 | Aachen | 28th October 2024 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Safeguards R&D for Storage Facilities

- Safeguards impact on facility operation
 - Inspections require access and radiation exposure
 - Re-establishing CoK ("re-verification") in case of discrepancies or incident requires huge effort & time
- Safeguards R&D aims
 - Lessening operational burden (automated/remote systems)
 - Complement existing methods
- Under development for interim storage facilities
 - Improved C/S techniques (e.g. "laser curtains")
 - Muon tomography of casks (measuring content density)
- Under development for geological repositories
 - Muon tomography for design information verification

V. Sequeira et al., "Laser Curtain for Containment and Tracking". Proceedings of the INMM & ESARDA Meeting 2021.

D. Ancius et al., "Muon tomography for dual purpose casks (MUTOMCA) project". Proceedings of the INMM & ESARDA Meeting 2021.

Antineutrino Detection for SNF

- From reactor measurements to SNF safeguards
 - Fission fragments in SNF continue to beta-decay for decades/centuries
 - Lower energy, lower flux than reactors
 - Main detectable isotope: 90Sr
- Advantages apply to SNF as well
 - Signal penetrates containment
 - Direct measure of content complementary to muon (density) or n/γ measurements
- Complementary characterisation of SNF
 - Ongoing decays \rightarrow continuous monitoring
 - No need for direct physical access \rightarrow no radiation exposure for staff
- NU-SAFEGUADS project investigates:

5

- LAB, PVT scintillators + TMS time-projection chambers
- Current technologies: detection via Inverse Beta-Decay (IBD)

Antineutrino Safeguards at Spent Nuclear Fuel Applied Antineutrino Physics Workshop 2024 | Aachen | 28th October 2024 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Detector Technologies

- Applied antineutrino detection: active R&D in past two decades
 - Focussed on reactor anti-neutrinos
 - No "best" technology: ongoing R&D + use case-dependent
- Main technologies
 - Scintillators (liquid, crystal, plastic)
 - Cherenkov tanks
 - Radiochemical
 - Time projection chambers (TPCs)
- For ideal detector:
 - Good scaling (small/large, flexible geometries)
 - Localised information (segmentation/good reconstruction)
 - Sensitivity near IBD threshold (1.8 MeV)
 - Continuous, autonomous readout
 - Final state reconstruction (particle ID: e⁺ vs e⁻)
 - Antineutrino direction

6

MiniCHANDLER (plastic scintillator-based) http://cnp.phys.vt.edu/chandler/

Detector Concept: LOr-TPC

- TPCs provide good reconstruction of particle positions and/or trajectories
 - \rightarrow useful for particle ID and directionality
 - \rightarrow but most TPC media not dense / low in hydrogen
- Concept: Liquid Organic TPC (LOr-TPC)
 - Tetramethylsilane (TMS): Si(CH₃)₄
 - Contains hydrogen for IBD: 5.3 x 10²² H atoms per cm³
 - Basic feasibility investigated by S. Wu et al. at Stanford
 - However: drift over larger distances unproven

T. Radermacher et al, "Liquid-organic time projection chamber for detecting low energy antineutrinos". Nucl. Instr. Meth. A, vol. 1054, 168426 (2023).

Nuclear Verification and Disarmament

H₃C

Ha

Simulation of IBD in LOr-TPCs

- Initial GEANT4 simulations of IBD events in TMS
 - Includes preliminary model of electron drift
- Can resolve positron track, annihilation photons and neutron capture
 Additional background rejection
 - → additional background rejection

- Neutron recoil produces separate energy deposition

 → could be used to infer antineutrino direction
- Majority of events: enough information to reconstruct original \overline{v}_e direction with <10° deviation

Example Study: Interim Storage Facility

- Modelling sensitivity of 80m³ detectors
 - Four locations:

9

- 10m distance from casks
- Split into four 20m³ sub-units
- Concentrate on TMS as medium
- Simplified interim storage
 - 130 fuel casks x 19 fuel assemblies
 - SNF stored 20-60 years ago

Facility Monitoring

- 90% confidence level (CL) test of null hypothesis H_{full} against:
 - Diversion of 1 cask (~10.6 t HM)
 - Diversion of ½ cask (~5.3 t HM)
- Monitoring of whole facility

Re-verification

- Verify/reject single cask as full/empty
- Directional selection (30° cone)
- Sequential Probability Ratio Test (SPRT): optimal verification/rejection time*
- Allow for asymmetric error:
 - 20% type I error (false positive)
 - 10% type II error (false negative)

Signal: Antineutrino Flux from SNF

- ONIX: simulate fuel assemblies
 - Example: GKN II fuel assembly at 54 MWd/kg burn-up
- Tally isotopic contents after burn-up

- Select main contributing isotopes (high $\overline{\upsilon}_e$ energy + long half-lives)
- NDS ENDSF database/BetaShape for beta & \overline{v}_e energy spectra

- Convolve with IBD cross-section
- Determine interaction rate
 per ton of SNF
- Repeat for different SNF ages

Dominant Background: Cosmogenic Fast Neutrons

- Surface facilities exposed to cosmic rays
 - Spallation of $^{12}\text{C} \rightarrow$ production of ^{9}Li / ^{8}He
 - Produce fast neutrons after decay
 - Fast neutron + accidental prompt from radioactivity \rightarrow fake IBD signal
- Use knowledge from reactor antineutrino experiments:
 - Based on PROSPECT[1], PROSPECT-II predictions[2], NEOS[3]
 - Highly segmented detectors using liquid scintillator (LS)
- Estimated background events: 53 events/day per ton
 - Adjusted for ¹²C content and SNF energy range (1 MeV window):
 - Liquid Scintillator (LAB): c. 7.1 events per day per m³
 - Plastic Scintillator (PVT): c. 8.5 events per day per m³
 - LOr-TPC (TMS): c. 3.4 events per day per m³

Conservative

- No further assumptions
- \rightarrow 272 events / day per detector

Directional

- Rejection of any events not coming from facility
- \rightarrow 27.2 events / day per detector

Directional + Enhanced

- Rejection of any events not coming from facility
- 0.5 MeV window
- 50% reduction through e+/e- ID
- $\rightarrow 6.8$ events / day per detector

Facility Monitoring: "Conservative Background"

- Time t_{CL90} to reach 90% CL for both scenarios for each cask location
 - Scenario 1 (1 cask): \tilde{t}_{CL90} (median) = 13.6 months (5.0-16.5 months), 90% quantile = 15.6 months
 - No bkg (1 cask): \tilde{t}_{CL90} (median) = 8.5 months (1.4-11.0 months), 90% quantile = 11.4 months
 - Scenario 2 (½ cask): \tilde{t}_{CL90} (median) = 15.7 months (5.6-22.0 months), 90% quantile = 17.6 months
 - No bkg (½ cask): \tilde{t}_{CL90} (median) = 11.3 months (1.7-21.1 months), 90% quantile = 14.2 months

Facility Monitoring: "Directional Rejection"

• Time t_{CL90} to reach 90% CL for both scenarios for each cask location

- Scenario 1 (1 cask): \tilde{t}_{CL90} (median) = 9.3 months (1.9-14.1 months), 90% quantile = 12.5 months
 - No bkg (1 cask): \tilde{t}_{CL90} (median) = 8.5 months (1.4-11.0 months), 90% quantile = 11.4 months
- Scenario 2 (½ cask): \tilde{t}_{CL90} (median) = 11.8 months (2.2-21.4 months), 90% quantile = 15.4 months
 - No bkg (½ cask): \tilde{t}_{CL90} (median) = 11.3 months (1.7-21.1 months), 90% quantile = 14.2 months

Facility Monitoring: "Directional + Enhanced Rejection"

- Time t_{CL90} to reach 90% CL for both scenarios for each cask location
 - Scenario 1 (1 cask): \tilde{t}_{CL90} (median) = 8.9 months (1.6-13.3 months), 90% quantile = 11.7 months
 - No bkg (1 cask): \tilde{t}_{CL90} (median) = 8.5 months (1.4-11.0 months), 90% quantile = 11.4 months
 - Scenario 2 (½ cask): \tilde{t}_{CL90} (median) = 11.8 months (1.8-21.2 months), 90% quantile = 14.6 months
 - No bkg (½ cask): \tilde{t}_{CL90} (median) = 11.3 months (1.7-21.1 months), 90% quantile = 14.2 months

Re-Verification: "Directional + Enhanced Rejection"

Re-verification of single cask of interest: verify full or declare empty cask with SPRT

- Time t_{SPRT} to verify/reject a cask (30° selection cone)
 - Full Cask: \tilde{t}_{SPRT} (median) = 4.1 months (0.3-15.6 months), 90% quantile = 8.6 months
 - No bkg: \tilde{t}_{SPRT} (median) = 2.6 months (0.3-14.6 months), 90% quantile = 5.6 months
 - Empty Cask: \tilde{t}_{SPRT} (median) = 3.3 months (0.3-13.5 months), 90% quantile = 7.8 months
 - No bkg: \tilde{t}_{SPRT} (median) = 2.2 months (0.2-10.6 months), 90% quantile = 4.7 months

"Pick your CL"

- Repeat facility monitoring procedure for:
 - Background rate from 1/day 500/day
 - Calculate median CL for range 1-20 months
- Determine required background suppression based on...
 - Required timeliness (depends on monitored material)
 - Acceptable CL

- Required CL varies by task
 - "Gold standard" at 90%
 - For certain re-verification / complementary as low as 50%

Conclusions

- Antineutrino detection for safeguards
 - Attractive features: reduce need for direct (staff) access & unique signal for SNF
 - Information complementary to density or n/γ measurements
 - But: challenging signal rates in any scenario
- Interim storage facility

17

- Newer SNF & lower stand-off distances: sufficient signal rates
- Cosmogenic background challenging:
 - Directionality greatly enhances sensitivity
 - Need for detector R&D to be feasible
- General monitoring: < 1 year to detect removal
- Re-verification: few months required

Interim Storage: Re-verification Scenario

Ongoing & Future Work

Expanding studies with **nuSENTRY**

- Project on antineutrino-based safeguards for future reactors (SMRs, Gen 4+, HALEU etc)
- Combination with other channels of interest
- Includes detector development:

18

- Scaling for LOr-TPC with TMS: test of readout with up to 10 cm drift distance
- Custom TMS purification & cooling system for LOr-TPC system

DN100CF Cube

Antineutrino Safeguards at Spent Nuclear Fuel Applied Antineutrino Physics Workshop 2024 | Aachen | 28th October 2024 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Summary & Outlook

- NU-SAFEGUARDS: studying feasibility of antineutrino detection as safeguards for SNF
- Continued studies with nuSENTRY
 - Embedding application for antineutrino monitoring in overall safeguards concepts & use cases for new reactors (advanced, SMR, HALEU)
 - LOr-TPC R&D

19

- Collaboration with the Peace Research Institute Frankfurt (PRIF)
 - Affiliated with the Science for Nuclear Diplomacy group (<u>https://www.cntrarmscontrol.org/snd</u>)
 - Using experimental physics + computational physics to support nonproliferation, arms control, verification and disarmament of nuclear weapons

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

BABIGEIST ELLOWSHIP DER VOLKSWAGENSTIFTUNG

Thank you for your attention!

...any questions?

20

Funded by:

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

Antineutrino Safeguards at Spent Nuclear Fuel Applied Antineutrino Physics Workshop 2024 | Aachen | 28th October 2024 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Backup Slides

Antineutrino Detection: Inverse Beta-Decay

- Inverse Beta-Decay (IBD)
 - Main channel of interest

- Process: $\overline{\nu}_e + p \rightarrow e^+ + n$
- Double coincidence time structure
 → powerful background rejection
- Kinematics impose energy threshold
 - 1.806 MeV for (semi-)free protons
 - Require hydrogen-rich detection medium: organic scintillators, organic media

Antineutrino Monitoring Concept Paper

- Antineutrino monitoring concept has been proposed and investigated by V. Brdar, P. Huber and J. Kopp in 2017
- Paper calculates antineutrino flux for all isotopes
 - ⁸⁸Kr dominates after a few hours
 - ⁹⁰Sr dominates after 10 years

23

- Does not make technological recommendations
 - But points out that current technology insufficient (except for detecting "cataclysmic" spills)
 - Recommends directional resolution O(10 degrees)

Brdar, V. and Huber, P. and Kopp, J., "Antineutrino Monitoring of Spent Nuclear Fuel", Phys. Rev. Applied, vol. 8, issue 5, pg 054050 (2017). DOI: https://doi.org/10.1103/PhysRevApplied.8.054050

Nuclear Verific and Disarman

Significant Quantities

- "Timely" dependent on isotope and form
- Detection time dependent on ease of extraction

Material	Quantity
Plutonium ²³³ U	8 kg 8 kg
Highly enriched uranium (20+% ²³⁵ U)	25 kg
Low enrichment uranium (<20% ²³⁵ U) Natural uranium Depleted uranium	75 kg 10 t 20 t
Thorium	20 t

Material	"Timely"
Fresh Plutonium / 235U	1 Months
Irradiated Plutonium / ²³⁵ U	3 Months
Indirectly useable material	3-12 Months

III. Physikalisches

Institut B

clear Verificatio

and Disarmament

Applied Antineutrino Physics Workshop 2024 | Aachen | 28th October 2024 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

Example: Geological Repository - Layout

<u>ا</u> 300

250

200

150

100

50

0

- Modelling sensitivity of idealised 80m³ detectors (no background)
 - Eight locations: 50m above casks
- Simplified geological repository

- 1,120 canisters x 10 fuel assemblies
- Uniform age for all canisters (50, 100 or 200 years)
- Modelled diversion of 1.25% of content (14 canisters: ~78.4t HM)
- Three detection media compared all similar overall performance

Example: Geological Repository – Sensitivity

Criterion for detection: 90+% CL that diversion occurred

- Time t_{CL90} to reach 90% CL for all scenarios for removed group (no background)
 - Scenario 1 (50 years): \tilde{t}_{CL90} (median) = 8.6 months (5.0-12.5 months), 90% quantile = 11.5 months
 - Scenario 2 (100 years): \tilde{t}_{CL90} (median) = 14.2 months (10.6-17.3 months), 90% quantile = 16.7 months
 - Scenario 3 (200 years): \tilde{t}_{CL90} (median) = 20.6 months (19.4-21.8 months), 90% quantile = 21.6 months

Example: Geological Repository – Sensitivity

- Conclusion for geological repositories
 - Long-term monitoring (100+ years) difficult:
 - Limited by 90Sr half-life of ~30 years
 - Need to cover large area

Sequential Probability Ratio Test

Antineutrino Safeguards at Spent Nuclear Fuel Applied Antineutrino Physics Workshop 2024 | Aachen | 28th October 2024 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

TMS Purification System

Antineutrino Safeguards at Spent Nuclear Fuel Applied Antineutrino Physics Workshop 2024 | Aachen | 28th October 2024 Yan-Jie Schnellbach | schnellbach@nvd.rwth-aachen.de

