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Overview

• Field Experiment Motivation
 Types of Field Experiments

• Nuclear Explosion Monitoring

• Field Experiment Monitoring
 Comparisons with antineutrino detectors

• Conclusions
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Motivation for Field Scale Experiments (FSE)

• Research into monitoring methods 
at local and regional length scales 
without a nuclear test

• Leverage laboratory/field 
experiments as surrogates

• Incorporate various length and 
timescales to identify potential 
signals
 Chemical explosions
 Radiotracers
 Electromagnetic sources
 Atmospheric releases

Scaled 
Experiments

FSE
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Example Field Experiments - Boreholes

The Source Physics Experiment (SPE) Science Plan. doi:10.2172/1887003.

• Deep central borehole with multiple small outer boreholes for sensors
• Long stand-off distances

 Would expect minimal antineutrino signals if there were a fission source

• Seismic and Infrasound focused
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Example Field Experiments - Tunnel

A multi-Physics Experiment for Low-Yield Nuclear Explosion Monitoring. doi:10.2172/2345984.

• Tunnel layout for chemical explosives and surrounding sensors
• Shorter stand-off distances

 Easier to get much closer to the experiment, but there are limits
 Driven by safety and material migration

• Easier sensor deployment
 More accommodating to large sensors
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Nuclear Explosion Monitoring

• Earthquake versus 
Explosion
 Seismic
 Infrasound
 Hydroacoustic

• Chemical versus Nuclear
 Radionuclide

 Aerosol
 Noble Gas

Infrasound waves

Radionuclides

Seismic waves

Electromagnetic waves



7

Types of Monitoring During Field Experiments

• Seismic
 Near source accelerometers
 Far-field seismic
 Distributed Acoustic Sensing

• Infrasound
 Acoustic monitoring

• Electromagnetic Sensors
• Radionuclide

 Aerosol
 Noble Gas

A multi-Physics Experiment for Low-Yield Nuclear Explosion Monitoring. doi:10.2172/2345984.



8

High G Environment throughout the Tunnel

Peak acceleration 
over 50g 

Peak acceleration 
under 5g

Peak acceleration 
under 1g 
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High G environment ~25m away
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Cavity sensors recorded temperature and pressure 

Example

TC - Thermocouple

Te
m

pe
ra

tu
re

 in
 °C
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Tracer Gas Observations

• High explosive and tracer (127Xe) gases observed in all the boreholes, the three 
tunnel locations and the ventilation.

• An antineutrino detector positioned near the experiment would also see tracer 
radioactivity
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No Impact of Tracers on an Antineutrino Detector 
During Experiment Preparation

• 127Xe
 Decays via electron capture (neutrino emitted)
 ~1010 neutrinos/s emitted from the tracer source
 Not a major background for an inverse beta decay detector

• 133Xe
 Decays via beta decay (antineutrino emitted)
 ~1010 antineutrinos/s emitted from the tracer source
 Still orders of magnitude lower than a fission source

• Fission
 ~1022 antineutrinos/10 tons in 10 seconds
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Impact of Tracers on an Antineutrino Detector 
During Experiment Execution

• The tracers wouldn’t result in an antineutrino background while emplaced, 
but what about following gas migration?

• Diluted contributions of ~106 (anti)neutrinos/second near the sensor location
• Still insignificant compared to fission even with the stand-off distance

• Larger background would be from gamma ray emissions from 127Xe or 133Xe
• Without a prompt vent, any backgrounds would likely be after the first 10 

seconds of interest for an antineutrino detector
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Measurement Distances

• Adjacent to High Explosive
 CORRTEX (COntinuous 

Reflectometry for Radius versus 
Time Experiments)
 Consumed

• Out to ~10m
 Cavity sensors (e.g., temperature 

and pressure)
 Consumed
 Large seismic shock

• Out to ~100m
 Seismic, infrasound, and gas 

sensors
 Persistent
 Smaller seismic shock Use of CORRTEX to measure explosive performance and stem behavior in oil shale 

fragmentation tests, https://digital.library.unt.edu/ark:/67531/metadc1110100

https://digital.library.unt.edu/ark:/67531/metadc1110100


15

Potential Measurement Methods

• Explosion
 CORRTEX – immediate

 (COntinuous Reflectometry for Radius versus 
Time Experiments)

• Chemical versus Nuclear
 Core samples – long duration drill back
 Radionuclide monitoring – gas migration 

time scales (immediate to slow)
 Neutrons - immediate
 Gammas - immediate

https://www.sciencebase.gov/mercury/#/images/rock-sample

SAUNA QB - Array: The realization of a new 
concept in radioxenon detection, 
https://doi.org/10.1016/j.jenvrad.2023.107136.

PE1-A Measurement
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Prompt Monitoring Signal Comparison

• When does the flux of neutrons or gamma rays equal 1 cm-2?

𝑟𝑟

�ν

γ

𝑛𝑛

𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝑛𝑛𝐴𝐴:  𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼 ~10⁻⁴³ 𝑐𝑐𝑐𝑐𝑐

~1022 antineutrinos 
for a 10 T of fission

~same neutron and 
gamma ray flux



Prompt Monitoring Comparison

• At these distances, the flux of neutrons or gamma rays equals 1 per cm2

• Beyond this distance the size of the detectors will start to increase beyond a handheld 
detector

• Outside of a 25 m concrete plug the attenuation decreases neutron and gamma rates 
beyond detection levels.

• Detectors would either rely on leakage or being put closer at the above distances and sacrificed after 
the prompt signal.

r ≈ 3.5 𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑚𝑚 𝑟𝑟 ≈ 6 𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑚𝑚 

𝐼𝐼 =
𝐼𝐼0

4𝜋𝜋𝑟𝑟2 𝐴𝐴
−Σ𝑟𝑟 𝐼𝐼 =

𝐼𝐼0

4𝜋𝜋𝑟𝑟2 𝐴𝐴
−μ𝑟𝑟

𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝑛𝑛𝑚𝑚 @ 1 𝑀𝑀𝐴𝐴𝑀𝑀:  Σ ≈ 0.1 𝑐𝑐𝑐𝑐−1 𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝐺𝐺 𝑟𝑟𝐺𝐺𝑟𝑟𝑚𝑚 @ 1 𝑀𝑀𝐴𝐴𝑀𝑀:  𝜇𝜇 ≈ 0.05 𝑐𝑐𝑐𝑐−1

𝐼𝐼 = 1 𝑛𝑛
𝑐𝑐𝑐𝑐2 = 1022

4𝜋𝜋𝑟𝑟2
𝐴𝐴−0.1𝑟𝑟 𝐼𝐼 = 1 γ

𝑐𝑐𝑐𝑐2 = 1022

4𝜋𝜋𝑟𝑟2
𝐴𝐴−0.05𝑟𝑟
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Monitoring with Noble Gas Detection

• 1 Ci tracer source: gas sensors saw ~100 kBq/m3 of 127Xe in the tunnel 

100 𝑘𝑘𝑘𝑘𝑘𝑘𝑐𝑐3
 𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝑑𝑑

1 𝐶𝐶𝐴𝐴 127𝑋𝑋𝐴𝐴 𝑚𝑚𝐴𝐴𝐴𝐴𝑟𝑟𝑐𝑐𝐴𝐴
= 2.7 × 10−6𝑑𝑑𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 𝑓𝑓𝐺𝐺𝑐𝑐𝐴𝐴𝐴𝐴𝑟𝑟

~5 𝑘𝑘𝑘𝑘𝑘𝑘/𝑐𝑐3

133Xe Detection Limit

Gas 
Collection 
Systems

~0.5 𝑐𝑐𝑘𝑘𝑘𝑘/𝑐𝑐3

Real-Time 
Experiment 
Detectors

Minimum Source Activity Comparable Fission Yield

~109 𝑘𝑘𝑘𝑘

~102 𝑘𝑘𝑘𝑘

~10−3 𝑇𝑇

~10−10 𝑇𝑇

*Assumes same driving force as the experiment for the gases into the environment

10 𝑇𝑇~1013 𝑘𝑘𝑘𝑘 𝐴𝐴𝑓𝑓 133𝑋𝑋𝐴𝐴

SAUNA QB - 
doi.org/10.1016/j.jenvrad.2023.107136.

𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 𝐿𝐿𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴
𝐷𝐷𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛

= 𝑆𝑆𝐴𝐴𝐴𝐴𝑟𝑟𝑐𝑐𝐴𝐴 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟
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Detection Mechanism Comparisons

Noble Gas Neutron/Gamma Antineutrino

Advantages - Sensitivity
- Sample at a different 

location from detector
- Isotopic discrimination

- COTS detectors available - No shielding the 
signal

- No attenuation
- No spoofing

Disadvantages - Gas migration 
dependent

- Potentially delayed 
response

- Attenuation of signals
- Other sources as possible 

backgrounds

- Size (space and 
shock impact)

- Cost

γ𝑛𝑛

The PROSPECT reactor antineutrino experiment, 
doi.org/10.1016/j.nima.2018.12.079.
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Detector Operational Requirements and Needs

• Needs to survive high G-forces
• Need well understood backgrounds
• Sensitivity calculations for detector options – Yield vs Distance

 Understanding how that compares to potential sites

• No false positives
• What does “zero” mean?
• Cost-benefit analysis

 How does it compare to other methods?
 How does it impact the field experiments?
 Additional risks?
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Conclusions

• Field scale experiments are used to progress nuclear explosion monitoring

• Seismic monitoring alone isn’t enough to demonstrate the chemical nature of 
the experiments

• Monitoring for non-nuclear nature
 Could be performed with radioactive material, neutrons, gammas, or antineutrinos 

depending on time and distance requirements

• Distance of closest approach may be limited
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