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* Research into monitoring methods
at local and regional length scales
without a nuclear test

* Leverage laboratory/field
experiments as surrogates

 Incorporate various length and
timescales to identify potential
signals
= Chemical explosions
» Radiotracers
= Electromagnetic sources
= Atmospheric releases
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* Deep central borehole with multiple small outer boreholes for sensors

» Long stand-off distances
= Would expect minimal antineutrino signals if there were a fission source

 Seismic and Infrasound focused
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The Source Physics Experiment (SPE) Science Plan. doi:10.2172/1887003.
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* Tunnel layout for chemical explosives and surrounding sensors

« Shorter stand-off distances
= Easier to get much closer to the experiment, but there are limits
= Driven by safety and material migration

» Easier sensor deployment
* More accommodating to large sensors

A multi-Physics Experiment for Low-Yield Nuclear Explosion Monitoring. doi:10.2172/2345984.
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Atmospheric Satellite signal

« Earthquake versus . (R e*plosions A
EXpIOSIOn Volcanoes ' ' |
- SeismiC | Seismogram or acoustogram
-‘ e o Nuclear reactors
' . IS0t faciliti
" |nfraSOUHd A Accidents Mine blast % f\?ﬂ(;;g:llzgé;ersh
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e Chemical versus Nuclear

= Radionuclide

v" Aerosol
v Noble Gas

« Mine collapse
& rock bursts

) Radionuclides

Nuclear test

Infrasound waves

Seismic waves

Electromagnetic waves
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e Seismic

Table 5: Instrumentation Description for PE1

= Near source accelerometers nstrument Type surface | Tunmel | APPFOX. Time Duration | Approx. Distance
(w/rft Ta) from Source
] - 1 1 I Cavity Sensors X -1 week to + 4 weeks 10cm - 25 m
Far fleld SelsmIC Accelerometers X X Toto + 48 hours 10m=1 km
. . . . Real Time Gas Monitoring * X - 4 weeks to + 4 weeks 15 m=5 km
. DIStrIbuted ACOUStIC SenSIng Gas & Particulate Sample Analysis x X - 4 weeks to + 4 weeks 15m=5km
Distributed Acoustic Sensing {DAS) X Toto+ 24 hours 30m-13km
Tumnel Environment Monitoring X - 4 weeks to + 4 weeks 30m-1.3 km
o I n fra S O u n d Seismic » X -6 months to + & months &0 m = 375 km
EM Sensors X X -12 howrs to + 12 hours S50m=1.3km
. . . Acoustic x X -6 months to + & months 240 m = 4.5 km
" ACO U Stl C m O n |t0 rl n g Meteorological kS -& months to + B months 1.3 km - 30 km
« Electromagnetic Sensors
Table 3. Material tracers released during each explosive and atmaospheric PE1 experiment.
. . Tracers Experiments
e Radionuclide — FE;-A PEL-B PE:;-DL METEX | REACT MTB{
MNe-133° X "
= Aerosol = : : -
Tritium Gas (HT) X ¥ X
[ | NOble Gas Stable Tracers DU, | M X X
HE byproducts {from X X X
explosion)
Geogenic gases (from X " X
rock damage]
Smoke X x

"Specific Xe tracer may depend an availability.

A multi-Physics Experiment for Low-Yield Nuclear Explosion Monitoring. doi:10.2172/2345984.
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Peak acceleration Peak acceleration Peak acceleration
over 50g under 5g under 1g

se (Serial D30

‘HS%EjZﬁ

Walker Shack

—

Drift Hole Accelerometer
Locations




paciﬁc High G environment ~25m away

Northwest

NATIONAL LABORATORY

2023-10-18 Wednesday 15:14:56




o

Pacific Cavity sensors recorded temperature and pressure

Northwest

NATIONAL LABORATORY

Example

920

Rope 3

80

70
60
50

10 N

30

Temperature in °C

20

10

0
10/18/2023 14:24 10/18/2023 15:36  10/18/2023 16:48 10/18/2023 18:00 10/18/2023 19:12 10/18/2023 20:24 10/18/2023 21:36

Date and time

TC17 TC18 —TC19 TC20 —TC21 —TC22

TC - Thermocouple

10



o

Paciic Tracer Gas Observations

Northwest

NATIONAL LABORATORY

« High explosive and tracer (1%"Xe) gases observed in all the boreholes, the three
tunnel locations and the ventilation.

* An antineutrino detector positioned near the experiment would also see tracer
radioactivity

GS3

ntration (kBg/m?3)

Concentration %

-200 0 200 400 600 800 1000 1200 1400 1600

Elapsed time in minutes

—CO0 % ——C02 % ——CHA_% NH3 % ——H2 %
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\?/ No Impact of Tracers on an Antineutrino Detector
raciiic <« During Experiment Preparation

AAAAAAAAAAAAAAAAAA

= Decays via electron capture (neutrino emitted)
= ~1070 neutrinos/s emitted from the tracer source
= Not a major background for an inverse beta decay detector

o 133Xe

» Decays via beta decay (antineutrino emitted)
= ~10'0 antineutrinos/s emitted from the tracer source
= Still orders of magnitude lower than a fission source

* Fission
= ~1022 antineutrinos/10 tons in 10 seconds




\?/ Impact of Tracers on an Antineutrino Detector
Racfic st DUring Experiment Execution

AAAAAAAAAAAAAAAAAA

* The tracers wouldn’t result in an antineutrino background while emplaced,
but what about following gas migration?

* Diluted contributions of ~10° (anti)neutrinos/second near the sensor location
o Still insignificant compared to fission even with the stand-off distance

 Larger background would be from gamma ray emissions from 27 Xe or 33Xe

« Without a prompt vent, any backgrounds would likely be after the first 10
seconds of interest for an antineutrino detector

13
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CORRTEX [NSTRUMENTATION

(B) PULSE TRAVELS TOWARD

* Adjacent to High Explosive o -\ SHORT

= CORRTEX (COntinuous
Reflectometry for Radius versus
Time Experiments)

v Consumed

* Outto ~10m
= Cavity sensors (e.g., temperature

d nd preSSU re) {C) PULSE REFLECTS AT SHORT (D} PULSE RETURNS TO TRAILER
{SHOCK POSITION) ROUND TRIP TRAVEL _A—-—
MEASURED

START TIME

EXPLOSIVE

v' Consumed
v’ Large seismic shock

e OQutto~100m

= Seismic, infrasound, and gas

STOP TiME

SENSOrs
v’ Persistent Fig. 1. Schematic of CORRTEX system operation,
v Smaller seismic shock Use of CORRTEX to measure explosive performance and stem behavior in oil shale

fragmentation tests, https://digital.library.unt.edu/ark:/67531/metadc1110100
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* Explosion
= CORRTEX — immediate

v (COntinuous Reflectometry for Radius versus
Time Experiments)

ULy Vert Pl E_
9 =

« Chemical versus Nuclear T
= Core samples — Iong duration drill back https://www.sciencebase.gov/mercury/#/images/rock-sample

» Radionuclide monitoring — gas migration
time scales (immediate to slow) i

= Neutrons - immediate | e
= Gammas - immediate o
PE1-A Measurement —> |

DTN, e il

| :
SAUNA QB - Array: The realization of a new
concept in radioxenon detection,
https://doi.org/10.1016/j.jenvrad.2023.107136.
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~1042 antineutrinos
fora 10 T of fission

A
v

r
A—

gamma ray flux

Y

Antineutrino: o;zp ~107** cm

2

« When does the flux of neutrons or gamma rays equal 1 cm2?
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Paciic Prompt Monitoring Comparison
Northwest
I
Iy [ = ——e™Wr
[ = —2r 2
p— e 4mr
Neutrons @ 1 MeV: £ ~ 0.1 cm™?! Gammarays @1 MeV: u ~ 0.05 cm™!
| = 1n _ 10** p~0.17 | = ly _ 10*° p—0.057
cm®  4mr? cm®  4mr?
r ~ 3.5 meters r = 6 meters

At these distances, the flux of neutrons or gamma rays equals 1 per cm?

« Beyond this distance the size of the detectors will start to increase beyond a handheld
detector

 QOutside of a 25 m concrete plug the attenuation decreases neutron and gamma rates
beyond detection levels.

« Detectors would either rely on leakage or being put closer at the above distances and sacrificed after
the prompt signal.
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1 Ci tracer source: gas sensors saw ~100 kBgq/m3 of ?7Xe in the tunnel

100 kB;] detected
m

1Ci Y27 Xe source

= 2.7 x 10~ %dilution factor

Detection Limit

= Source Activity

Dilution 10 T~10'3 Bq of *3Xe
133Xe Detection Limit Minimum Source Activity Comparable Fission Yield
~5 kBq/m3 ) ~10° Bq = ~1073T
~0.5 mBq/m3 —) ~10° Bq —) ~10710T

*Assumes same driving force as the experiment for the gases into the environment

SAUNA QB -
doi.org/10.1016/j.jenvrad.2023.107136. 18
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Advantages

Disadvantages

Sensitivity

Sample at a different
location from detector
Isotopic discrimination

Gas migration
dependent
Potentially delayed
response

COTS detectors available -

Attenuation of signals

Other sources as possible

backgrounds

No shielding the
signal

No attenuation
No spoofing

Size (space and
shock impact)
Cost

Shielding

PRBEB0BES
. A

ALl

_ Active
4+ detector

Chassis

Floor
Concrete Monaolith

The PROSPECT reactor antineutrino experiment,
doi.org/10.1016/j.nima.2018.12.079.
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* Needs to survive high G-forces
* Need well understood backgrounds

« Sensitivity calculations for detector options — Yield vs Distance
= Understanding how that compares to potential sites

No false positives
 \What does “zero” mean?

» Cost-benefit analysis
= How does it compare to other methods?

= How does it impact the field experiments?
= Additional risks?
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* Field scale experiments are used to progress nuclear explosion monitoring

« Seismic monitoring alone isn’'t enough to demonstrate the chemical nature of
the experiments

* Monitoring for non-nuclear nature

»= Could be performed with radioactive material, neutrons, gammas, or antineutrinos
depending on time and distance requirements

 Distance of closest approach may be limited
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Experiment Report: LLNL-TR-864107
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