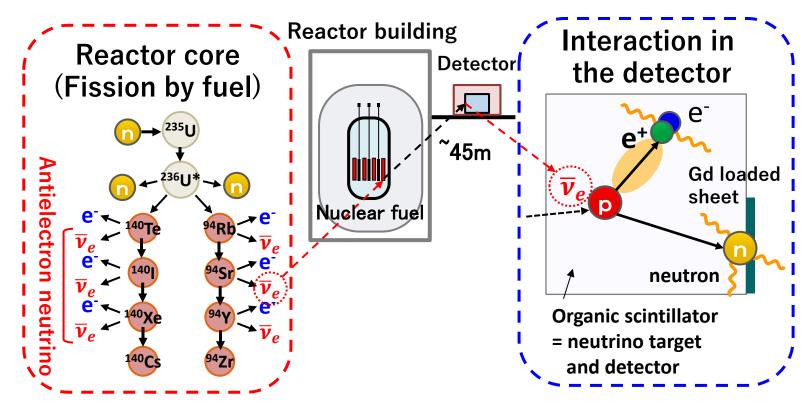
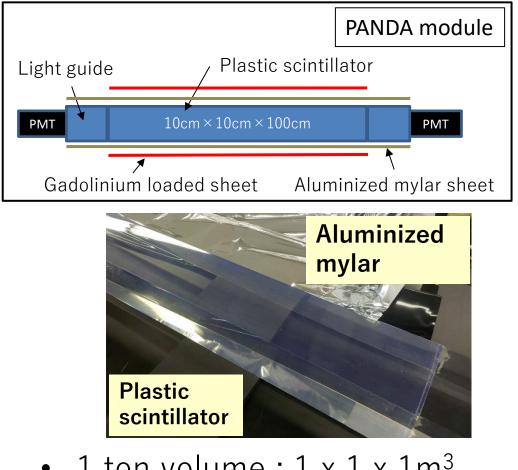
Honeycomb cell detector with Epoxy resin based scintillator


<u>T. Konno</u>, S. Hasegawa^A, T. Kawasaki Kitasato University, JAEA^A 29th, October 2024 Applied Anti-neutrino Physics@Aachen

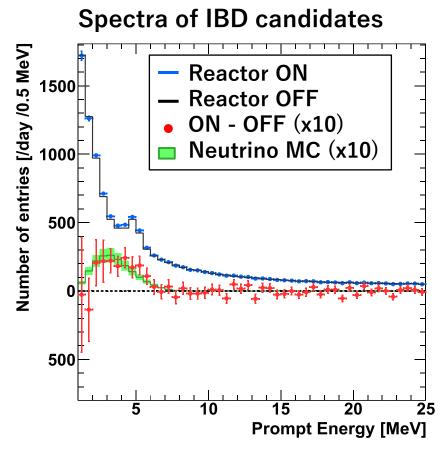
Introduction

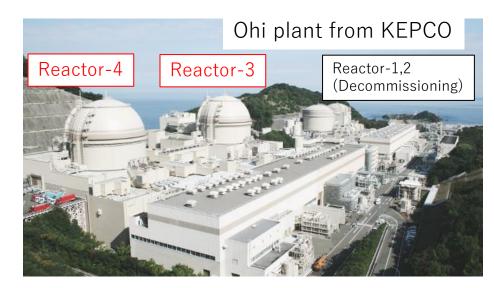

Portable reactor neutrino detection

Reactor = Powerful source of reactor neutrino

- Neutrinos / fission : 6x10²⁰ v /s (3GWth)
- Observable in outside of building (~45m)
- → Realtime and remote reactor monitoring is possible

Plastic Anti-Neutrino Detector Array (**PANDA**)



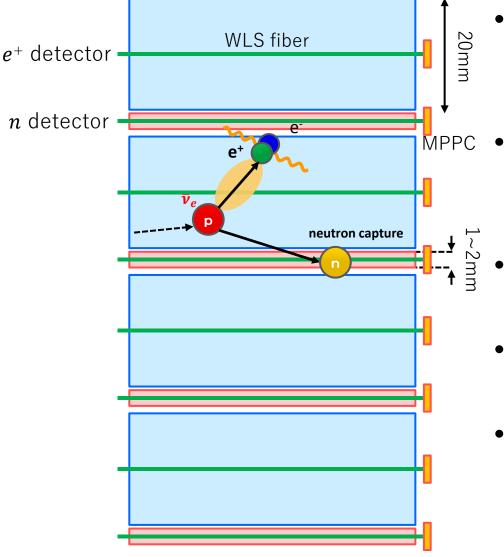

- 1 ton volume : 1 x 1 x 1m³
- Neutron is detected by Gd $n + \mathrm{Gd}^{155/7} \rightarrow \mathrm{Gd}^{156/8} + \gamma \mathrm{S}$

Combined $10 \times 10 = 100$ modules **PANDA** detector Im

Portable on the truck

Measurement at Ohi reactor (2019)

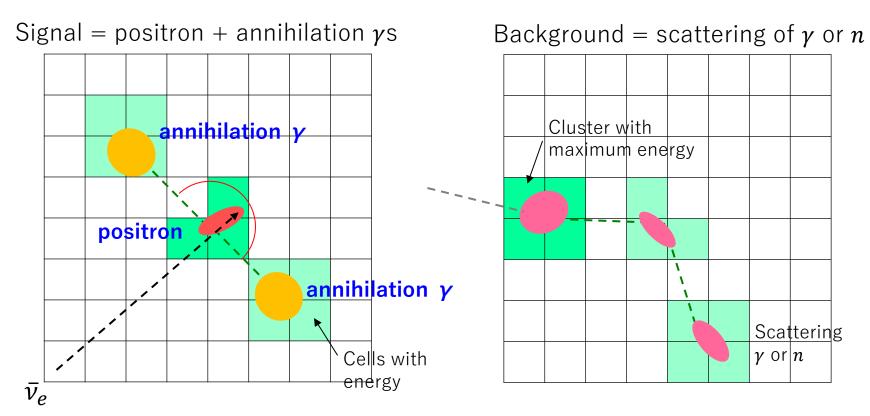
The detector located at parking area of the reactor-4.

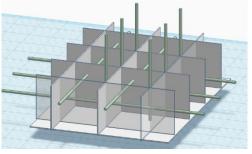

 Comparison with 20days for ON and 30 days for OFF

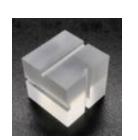
$$=>$$
 : 175.8 ± 34.4 [day⁻¹]

Need to reduce backgrounds from environment γ s and ns

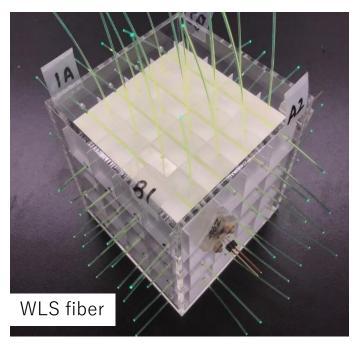
Development of Honeycomb cell detector


Multi plane layers for e^+ and n

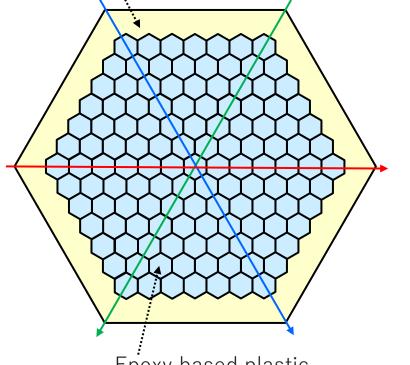

- Detector volume is divided into Optically separated planes of e⁺ and n detectors.
- Plastic scintillator plane with
 20mm thick is for neutrino
 target and e⁺ calorimeter
 - Another thin plane is for neutron detection
 - Both layers are read out via WLS fiber and MPPC
 - Sub-meter scale detector is under development
 - 40 e⁺ detection planes


Event topology based PID for *e*⁺

- IBD Prompt signal has e^+ leading annihilation γ s
 - 511keV γ s will go in back-to-back direction
 - Relative position of the cluster with maximum energy should be different between IBD and backgrounds


Cell structure with scintillator cubes

Drawing assembly of WLS fiber and partition


Scintillator cube

- Original idea of the cell structure is to assemble plastic scintillator cubes
- WLS fibers are assembled in XYZ directions.
 - 10 cm scale test type is developed
- Enlarging the detector volume is very difficult to assemble
- Next idea is to pile up independent planes with Honeycomb structure

Honeycomb cell structure for *e*⁺

Boric acid in epoxy resin for neutron shield

Epoxy based plastic scintillator as IBD target

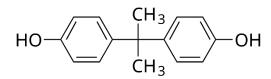
Example drawing for 13 cells in 1 row

Honeycomb cells by hexagonal with a side length of 2 cm

- Read via WLS fibers
 - 3 direction in a plane
 - 1 MPPC per fiber is attached
- Planes are optically separated
 - Easy to increase the volume
- Plane for test production has 17 cells in a maximum row
 - 60 cm in the long side
 - 20 planes will be produced.

Production of Honeycomb cell plane

Test production just started in the middle of October.


Next problem is "How should we fill scintillator in the cells ?"

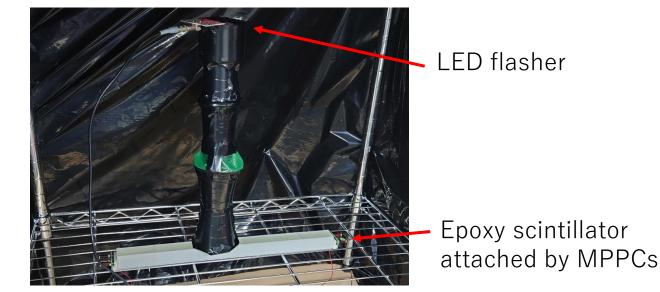
- Honeycomb structure is produced by 3D printer
 - White PETG filament
 - 2days per plane including outer walls
- Attached on PET reflector with 1mm thickness
- Integrated WLS fibers for three directions
- 51 MPPCs are attached
- 20 planes will be produced for test detector

Epoxy based plastic scintillator

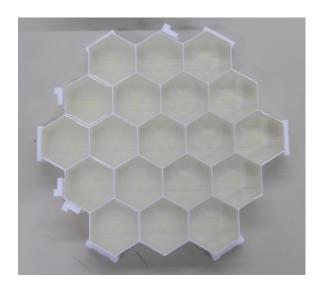
- Bisphenol A epoxy based resin is possible to work as plastic scintillator
- Use a commercial epoxy resin

- PPO and Bis-MSB are mixed in the base resin
 - PPO = 1.05g / Bis-MSB = 0.45g per 100 g resin
- ~76% light yield compared to plastic scintillator

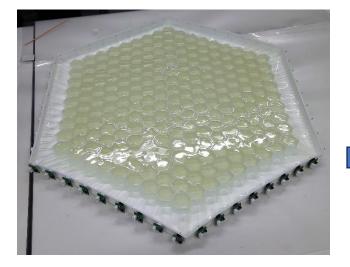
Mixing PPO and Bis-MSB in epoxy resin


Filled in a container made by 3D printer

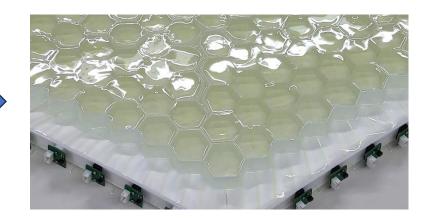
Light yield with 60Co


Attenuation in WSL fiber in Epoxy

- Attenuation length of Kurare Y-11 is > 3.5 m
- The attenuation length might shorten due to light leak
 - Refraction index of epoxy resin is larger than fiber
- Tested with 30cm WSL fiber in epoxy scintillator
- Light yields decreased by 30% in 30cm distance
 - Estimated attenuation length is ~190cm
 - Acceptable but need more study to stretch the length

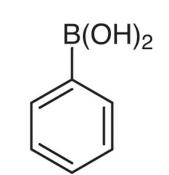


13


Filling epoxy scintillator to the cells

- Test filling of the epoxy scintillator to a small cell cluster was done well.
- Filling the resin to the test plane
 - 3.6kg base resin + 1.4kg hardening
 - Filled all resin at once
 - Formed in a night
- The cell structure deformed due to shrinkage of the resin

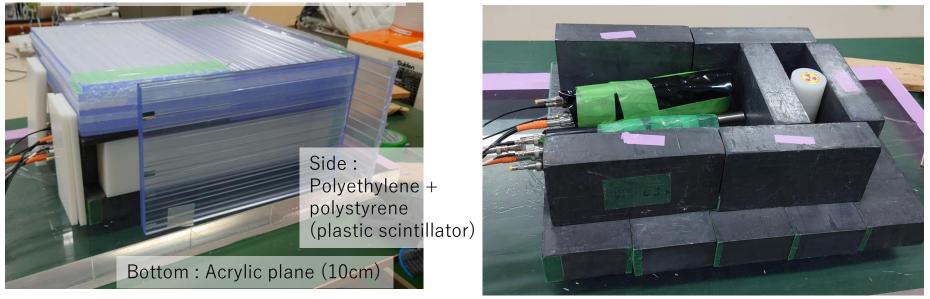
 $\bullet \rightarrow$ Need to fill the resin in sections


Neutron detection with α emittion

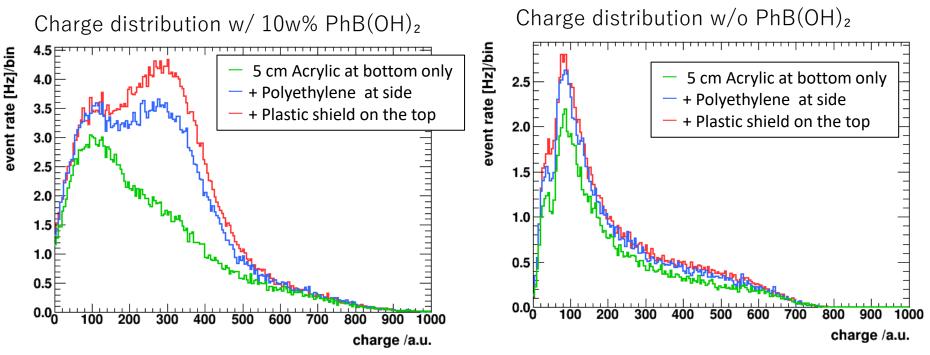
- α emitting neutron capture is very powerful to localize interactions after capturing compared to Gd- γ rays
- Two candidates are considered to mix in epoxy scintillator
- LiF (lithium fluoride) : $n + {}^{6}Li \rightarrow \alpha + {}^{3}T$
 - White powder with good reflection
 - Can not dissolve in the epoxy
 - ⁶Li has 7 % of natural isotope ratio

Right : Epoxy scintillator Left : +1w% LiF

- PhB(OH)₂ (Phenylboronic Acid) : $n + {}^{10}B \rightarrow \alpha + {}^{7}Li$
 - Easy to dissolve into epoxy resin
 - ¹⁰B has 20 % of natural isotope ratio



Right : Epoxy scintillator Left : +10w% PhB(OH)₂ 15


Neutron irradiation test with ²⁵²Cf

Top : polystyrene (plastic scintillator)

- ²⁵²Cf with 1MBq is used to produce thermal neutrons
 - Detector and Source are surrounded by plastic materials
 - Lead blocks to shield gamma rays
- Thermal neutron rate is also monitored by ³He chamber

Results of the test with ²⁵²Cf

- Sample with PhB(OH)₂ has excess by neutron capture
 - Possible to add more PhB(OH)₂
- Sample with LiF has no excess du to small mass ratio of ⁶Li
 - Need to increase percentage of ⁶Li
 - Enrich ⁶Li or Mix more LiF to $10 \sim 20\%$

Summary and next plan

- New technologies to reduce environment backgrounds is a challenge to reactor neutrino monitor
- Honeycomb cell plane is designed to separate positron and annihilation gamma rays in the prompt signal.
 Reduction of backgrounds by event topology PID
- Epoxy resin is possible to work as plastic scintillator
- α emitting neutron capture can be integrated
 - Phenylboronic Acid has good performance in the epoxy resin scintillator

Next plan

- 20 e⁺ detection planes will be produced in this year.
- neutron detection with WLS fiber will be tested
- Background measurement in the research reactor JRR-3