

Gadolinium-Loaded Plastic Scintillator Production and Characterization

Sertaç Öztürk

İstinye University, Turkey

Applied Antineutrino Physics Workshop 2024

28-30 October, Aachen

INIVERSITESI INIVERSITESI

Markov The first NPP construction has been recently started at Akkuyu.

- ✓ It is planed to start operations in 2025-2026.
- ✓ There will be 4 power units with capacity of 1200 MWe (P_{th} = 3200 MWt) each.
- Enriched uranium dioxide is the fuel.
- Sonstruction of additional NPP in Sinop and İgneada is being planned near future.

Mational and independent safeguard application is very crucial .

Monitoring NPP with a compact particle detector is possible.

İSTİNYE ÜNİVERSİTESİ I S T A N B U L

Segmented Plastic Scintillator Detector

Gadolinium-loaded segmented plastic scintillator modules for antineutrino detection.

- There are 25 identical I0xI0xI00 cm gadoliniumloaded polyvinyltoluene based plastic scintillators.
- It is about 250 kg and about 1185 antineutrino events can be observed per a day when it is placed 50 m away from the 3.2 GWt reactor core.

İSTİNYE ^{ÜNIVERSITESI}

Event Topologies and Machine Learning

Synthesis of Plastic Scintillators

Main A typical plastic scintillator consists of three components:

- ✓ polymer base, primary fluor (first additive), and wavelength shifter (second additive).
- Gd additive could be salt, organometallic or nanoparticles.
 - Transparency problem for nanoparticles
- The plastic scintillator samples are produced using the thermal bulk polymerization technique.

✓ Size and shape limitation

Name	₹ _₿ (°€)	લ (G / CH	p ³)	Ĥ	λ _{€∰} (₩₩)	
Rainvinyitoluene (PVT)	\$ 37 16 8	d.∰arm	1 ³)	A.59	2 2 15 (nm)	
Beliveryrene (BS) Peliveryrone (PVT)	<u>100</u> 99-118	1.02-1.0	965	1.59	315	
Polystyrene (PS)	100	1.04-1.0)65	1.59	310	
Name	Abbrev.	Rabs (AAA)	λŧ₩ (₩₩)) (\$	Ŧ (AS)	
No Terbhenvl	ABBrev.	288 276)	835(039)	6 .85	TR <u>(2</u> 0s)	
2,5-Diphenyloxazole	PPO	303,308	365;375	0.8	1.0	
	PPO	305,302 303,308	365;375	(4).80 0.8	斯 <i>经</i> 1.6	
2-pnenyi-5-(4-bipnenyiyi)-	TBD	305;302	360,365	0.8	1.2	
Name	Abbrev.	λ _{abs} (nm)	λ _{em} (nn	<u>b) 8</u>		
1.4-bis(5-bhenyl-2- Nanzelvilbenzene	₽⊖₽⊖₽ Abbrev.	365 λ_{abs} (nm)	415-417 λ _{em} (nm	7 0.85	1.3 T (ns)	
1.4-bis(2-phenyl-2-	BIS-TASB	347-350	420-417	0.96	1.8	
niethylsiwryllybenizene 1,4-bis(20,10- niethylsiwryllynenzene	BARMSB	366-375	430	Ø.95-	1.0 7.9	
<u>Chipheriyian di kacene - 9.10-</u>		300-375	430	0.95-1	.0 = 7.3	
diphenylanthracene	27.4				5	

Sertac Ozturk

Gd Loaded Plastic Scintillator

- 3 different types plastic scintillator samples are produced to determine optimal content.
 - Polyvinyltoulene as polimer base
 - ✓ PPO as primary flour (1.5%)
 - ✓ POPOP, bis-MSB and DAP as secondary flour (%0.08)
 - ✓ Gd(TMHD)₃ as Gd additive (%0.2)
 - ✓ φ=2.2 cm, h=3 cm

İSTİNYE ÜNİVERSİTESİ

Markov Transmission rates in 1 cm length are around 85%.

Light Yield Measurement

Second additive that gives the highest light yield is used in the detector.

İSTİNYE UNIVERSITESI

- The measurements were done using 4 different gamma sources.
- The compton- edge region in the energy distribution is fit with the Gaussian function and 80% values in the energy tail of the peak are taken.

Linearity of Gd Loaded PS

ISTINYE ÜNIVERSITESI

S samples have a good energy linearity.

Relative light yield values are acceptable.

MSB has the highest LY.

²²Na

100

66.84

62.84

55.88

$$R_{sample} = R_{EJ-200} \times V_{CE,sample} / V_{CE,EJ-200}$$

Sertac Ozturk

Rel. LY @ 80%

100

 67.14 ± 0.14

 63.23 ± 0.14

 56.48 ± 0.17

Epoxy Resin Based Gd Loaded PS

İSTİNYE ÜNİVERSİTESİ

$$T = \frac{I}{I_0} = exp \left\{ -\frac{32\pi^4 V_p x r^3 n_m^4}{\lambda^4} \left[\frac{\binom{n_p}{n_m}^2 - 1}{\binom{n_p}{n_m}^2 + 1} \right]^2 \right\}$$

- Size of PS is limited with size of the oven.
- Epoxy resin base could be a good option for Gd loaded PS production.
 - ✓ Size of silicon mold
 - ✓ Ready in two days
 - ✓ Cheaper
- If High viscosity is better for nanoparticle loading.
 - Nanoparticles tend to have higher thermal and air stabilities than theorganometallics.
 - ✓ The transmittance loss of nanoparticle embedded polymer as a result of Rayleigh scattering.
- 3 epoxy resin based PS were produced.
 - ✓ 1.5% PPO and 0.08% bis-MSB
 - ✓ 0.2% Gd(TMHD)₃ and Gd nanoparticle (particle size:13-95 nm)
 - ✓ φ=3 cm, h=4.5 cm
- Mo yellowish in epoxy resin based with Gd organometallic loading.

Sertac Ozturk

Light Yield of Epoxy PS

İSTİNYE ÜNİVERSİTESİ

Linearity of Epoxy Based PS

İSTİNYE ÜNİVERSİTESİ

> Epoxy resin based PS samples have a good energy linearity.

Relative light yield values are about 30% of EJ-276

Despite its opaque structure, the nanoparticle additive does not reduce the light efficiency much.

Samples	²² Na	¹³⁷ Cs	⁵⁴Mn	⁶⁰ Co	²² Na	Rel. LY @ 80%		
EJ-276	100	100	100	100	100	100		
Ероху	34.29	33.58	32.68	31.86	31.70	32.83 ± 0.44		
Epoxy-Gd	33.12	32.47	31.52	30.44	30.49	31.61 ± 0.48		
Epoxy-Gd NP	27.87	27.32	26.27	25.31	24.77	26.31 ± 0.52		

Sertac Ozturk

Li₂B₄O₇ NP Loaded PSD PS

Detecting thermal neutrons and fast neutrons with a NP loading plastic scintillator becomes emerging field.

ISTINYE üniversitesi

- Thermal neutron detection with ⁶Li, ¹⁰B, ¹¹³Cd and ^{155,157}Gd.
- Fast neutron detection with plastic scintillator containing high concentration of primary flor using pulse shape discrimination (PSD) technique.
- PSD sensitive PS with Li₂B₄O₇ nanoparticles could be great option for neutrino detectors.
- Project has just funded and Li₂B₄O₇ nanoparticles synthesis has started.

PV base, 30% PPO, 0.2% DAP and 3% polymer cross linker. ϕ =2.2 cm, h=4 cm

Isotope	Thermal neutron capture reaction	25 meV cross section (Barns)	Natural isotopic abundance (%)
³ He	${}_2^3He + n \rightarrow {}_1^3H + {}_1^1p$	5,330	0.000137
⁶ Li	${}^{6}Li + n \rightarrow {}^{3}H(2.73 \text{ MeV}) + \alpha(2.05 \text{ MeV})$	940	7.5
^{10}B	${}^{10}B + n \rightarrow {}^{7}Li^* + \alpha(1.47 \text{ MeV}) \rightarrow {}^{7}Li + \alpha(1.8 \text{ MeV}) + \gamma (0.48 \text{ MeV})$	3,840	19.9
¹¹³ Cd	$^{113}Cd + n \rightarrow ^{114}Cd + \gamma's$ (9 MeV)	20,600	12.2
¹⁵⁵ Gd	155.157 Cd + m > 156.158 Cd* > 156.158 Cd + σ^{-} + ω/σ (8 MoV)	60,900	14.7
157 Gd	$Ga + h \rightarrow Ga Ga \rightarrow Ga Ga + e + \gamma s (s MeV)$	254,000	15.7

12

Pulse Shape Discrimination

İSTİNYE Üniversitesi

0.05

500

1000

1500

2000

2500

ADC Channel

3000

- M-Be as a neutron source.
- Q_{tail}/Q_{total} vs energy histograms for PS-PSD and EJ-276 are shown.
- The PS-PSD shows the same behavior as EJ-276.

EJ-276

FoM for n/y Separation

The quality of the PSD was quantitatively estimated from the calculation of the Figure of Merit (FoM).

İSTİNYE ^{ÜNIVERSITESI}

SPS-PSD has a comparable FoM value with EJ-276.

$$FoM = \frac{\left|\mu_n - \mu_\gamma\right|}{2.35(\sigma_n + \sigma_\gamma)}$$

İSTİNYE ÜNİVERSİTESİ I S T A N B U L

Prospects and Conclusion

- Muclear reactors and nuclear technology will be active in Turkey in the next years.
- Monitoring these reactors independently and reactor antineutrino energy spectrum measurements are the main purposes.
- The effort for production and characterization of gadolinium loaded plastic scintillator has been started.
 - ✓ Gd-loaded plastic scintillator blocks with the content of PPO (1.5%) + bis-MSB (%0.08) + Gd(TMHD)₃ (%0.2)
- The project proposal has been submitted to the funding agency and a response is awaited.
- Solution: We want the set of the
- Work on improving the PSD-enabled plastic scintillator will continue.
- Collaborating and contributing to other groups are highly welcome.