INTERPETABLE MACHINE LEARNING APPROACH FOR ELECTRON ANTINEUTRINO SELECTION

ARSENII GAVRIKOV, VANESSA CERRONE, ANDREA SERAFINI, et al. based on <u>Phys. Lett. B 860 (2025) 139141</u>

vanessa.cerrone@studenti.unipd.it

Applied Antineutrino Physics 2024 workshop Aachen , 28-30 October 2024

JUNO AT A GLANCE

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment currently under construction in South China.

PPNP 123 (2022): 103927

JUNO AT A GLANCE

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment currently under construction in South China.

- ★ 52.5 km from two major Nuclear Power Plants (NPPs) with eight nuclear reactors (26.6 GW_{th})
- ★ 35 m-diameter sphere with 20 ktons of liquid scintillator (LS) surrounded by a water Cherenkov detector
- ★ Unprecedented energy resolution for a LSbased detector → 3% at 1 MeV arXiv 2405.17860

Experiment	Daya Bay	RENO	Double Chooz	KamLAND	JUNO	
LS mass	20 ton	16 ton	8 ton	1 kton	20 kton	
Energy resolution	8%	8%	8%	8% 6%		

ANTINEUTRINO DETECTION

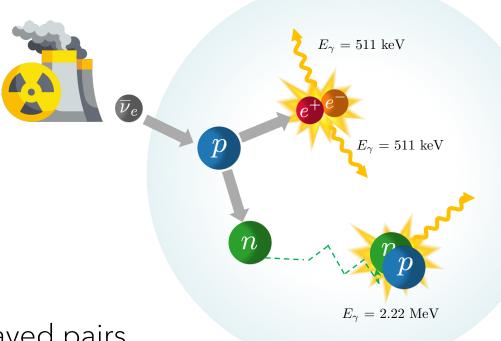
★ Primary detection channel is the Inverse Beta Decay (IBD) reaction:

Prompt signal: energy deposited by positron + annihilation energy

Delayed signal: neutron capture on nucleus (e.g., Hydrogen, Lithium, Gadolinium) and subsequent gamma ray emission

★ Close time and space correlation of prompt-delayed pairs
 → efficient background suppression and event tagging

★ Positron retains most of incoming antineutrino energy

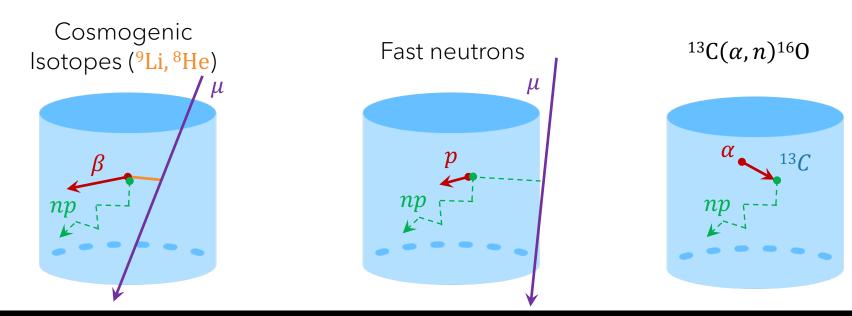


Backgrounds can be divided into two categories:

- 1. Correlated background: pair of events induced by a single physics process:
 - Geoneutrinos are electron antineutrinos and interact via IBD ightarrow irreducible

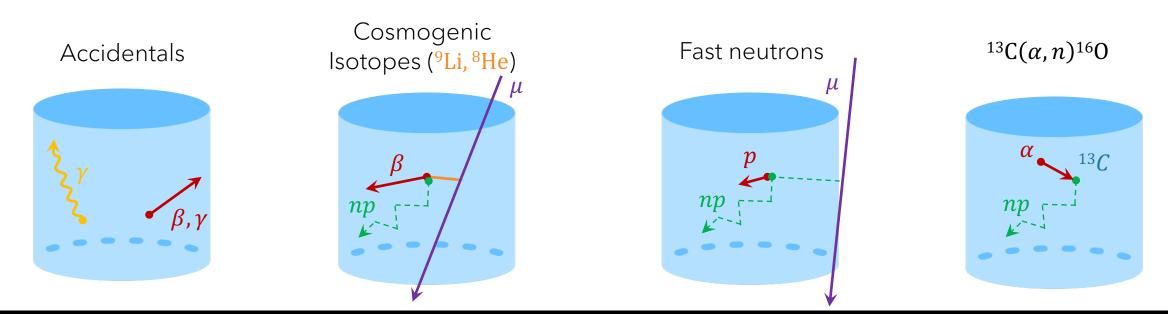
Backgrounds can be divided into two categories:

- 1. Correlated background: pair of events induced by a single physics process:
 - Geoneutrinos are electron antineutrinos and interact via IBD ightarrow irreducible
 - Cosmogenic isotopes, fast neutrons, ${}^{13}C(\alpha, n){}^{16}O$ mimic the prompt-delayed pattern



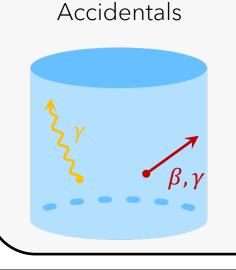
Backgrounds can be divided into two categories:

- 1. Correlated background: pair of events induced by a single physics process:
 - Geoneutrinos are electron antineutrinos and interact via IBD ightarrow irreducible
 - Cosmogenic isotopes, fast neutrons, ${}^{13}C(\alpha, n){}^{16}O$ mimic the prompt-delayed pattern
- 2. Uncorrelated background: accidental coincidences
 - Two independent signals (mainly from radioactive contamination) mimic the IBD pattern



Backgrounds can be divided into two categories:

- 1. Correlated background: pair of events induced by a single physics process:
 - Geoneutrinos are electron antineutrinos and interact via IBD ightarrow irreducible
 - Cosmogenic isotopes, fast neutrons, ${}^{13}C(\alpha, n){}^{16}O$ mimic the prompt-delayed pattern
- 2. Uncorrelated background: accidental coincidences
 - Two independent signals (mainly from radioactive contamination) mimic the IBD pattern



Before any selection, rate of single radioactive events is much higher than expected signal rate

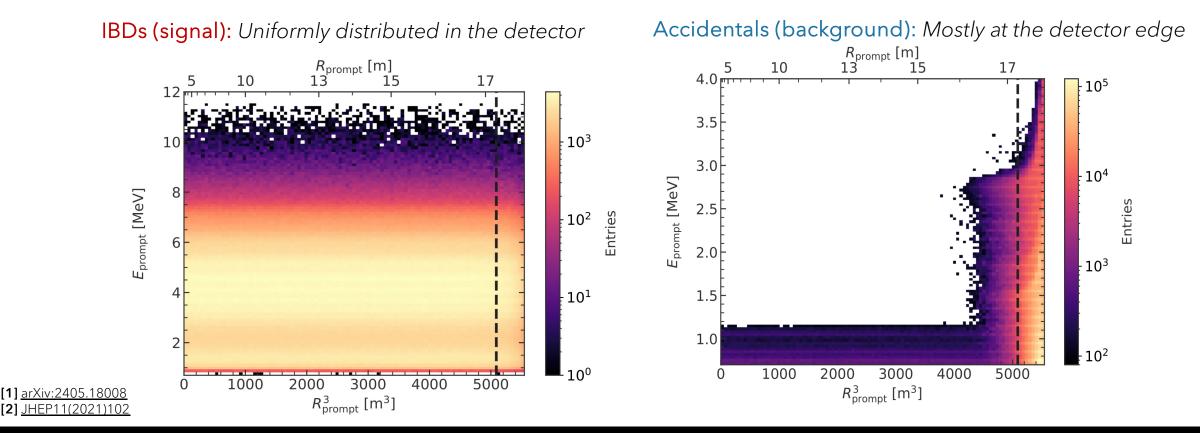
The main task of a selection algorithm is to distinguish between two classes: reactor antineutrino events and accidental coincidences

DATA DESCRIPTION AND BENCHMARK SELECTION

DATA DESCRIPTION

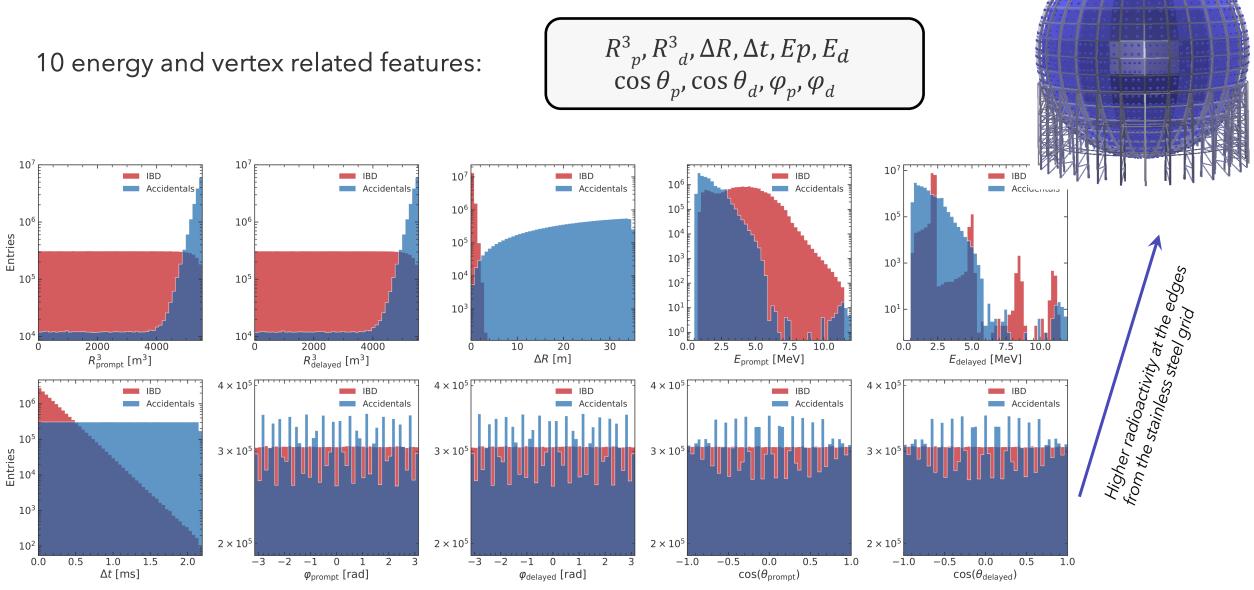
- ★ Highly imbalanced data: 57.4 IBDs /day [1] vs >10⁵ accidentals /day [2] (pairs)
- * For training and hyperparameter optimization, **balanced dataset is used** to prevent biases:
 - 15M of IBD pairs
 - 15M of accidental coincidences

20M for training, 5M for validation, 5M for testing



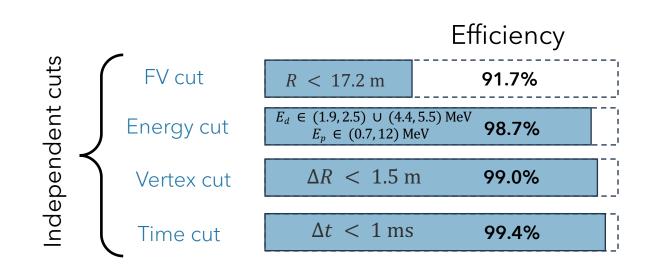
VANESSA CERRONE - INTERPETABLE MACHINE LEARNING APPROACH FOR ELECTRON ANTINEUTRINO SELECTION

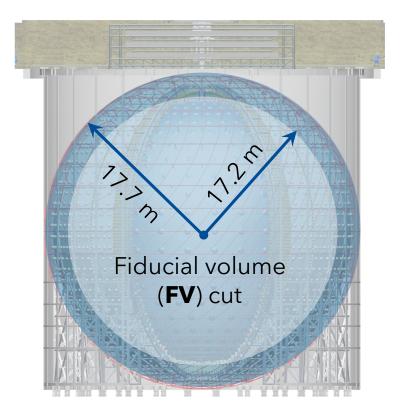
DATA DESCRIPTION: FEATURE DISTRIBUTIONS



*The dataset was produced independently of the JUNO official software

★ Benchmark for a machine learning approach \rightarrow cut-based selection strategy from [1]

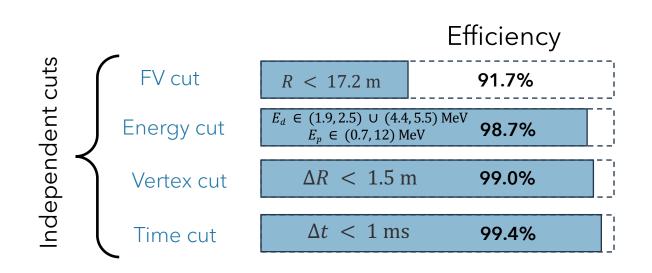


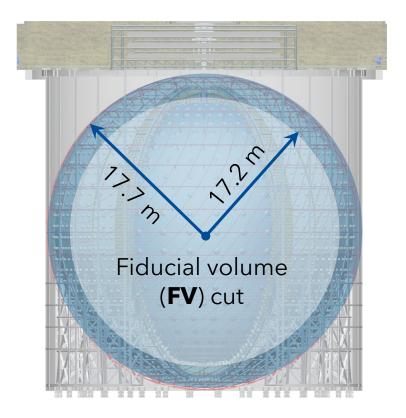


[1] <u>arXiv:2405.18008</u>

*The cut-based selection does not necessarily reproduce JUNO official selection

- * Benchmark for a machine learning approach \rightarrow cut-based selection strategy from [1]
- \star Room for improvement in standard selection
 - Can we **remove the FV cut and retain border events** keeping the same purity?

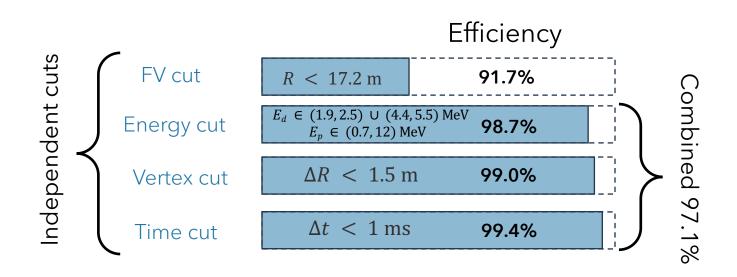


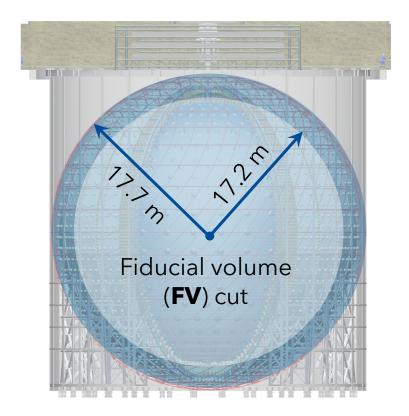


[1] <u>arXiv:2405.18008</u>

*The cut-based selection does not necessarily reproduce JUNO official selection

- * Benchmark for a machine learning approach \rightarrow cut-based selection strategy from [1]
- \star Room for improvement in standard selection
 - Can we **remove the FV cut and retain border events** keeping the same purity?
 - Can we increase the efficiency within FV?

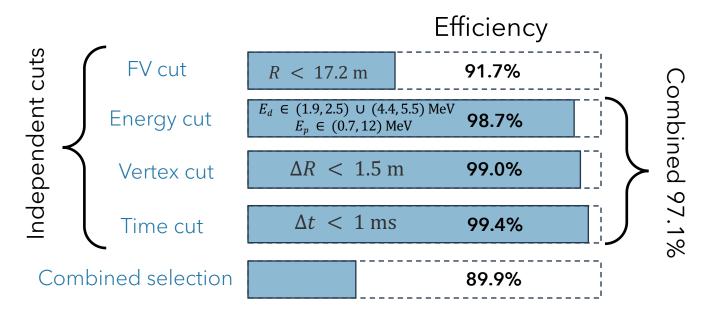


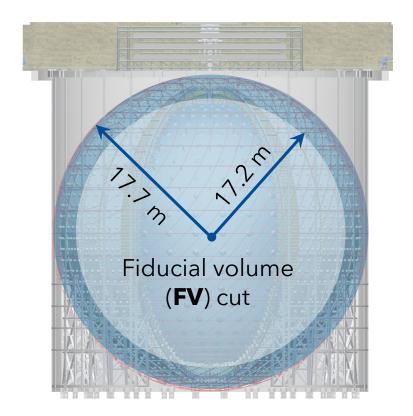


[1] <u>arXiv:2405.18008</u>

*The cut-based selection does not necessarily reproduce JUNO official selection

- * Benchmark for a machine learning approach \rightarrow cut-based selection strategy from [1]
- \star Room for improvement in standard selection
 - Can we **remove the FV cut and retain border events** keeping the same purity?
 - Can we increase the efficiency within FV?
 - Can we **improve the overall efficiency**?





[1] <u>arXiv:2405.18008</u>

*The cut-based selection does not necessarily reproduce JUNO official selection

MACHINE LEARNING APPROACH

NEURAL NETWORK ARCHITECTURE

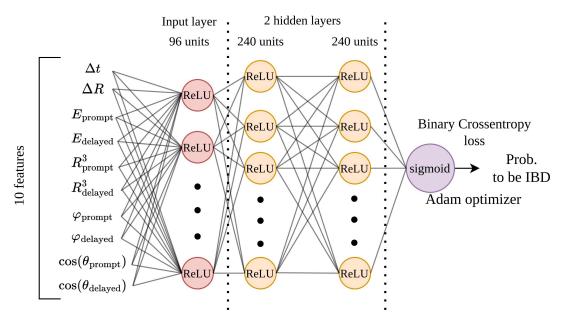
- ★ Supervised classification problem
- ★ Goal: **separate** between IBDs and accidentals

- ★ 10 input features:
 - Time and vertex distance: $\Delta t, \Delta R$
 - Prompt and delayed energies: E_p , E_d
 - Distance from detector center: R^{3}_{p} , R^{3}_{d}
 - Angular variables: $\varphi_p, \varphi_d, \cos \theta_p, \cos \theta_d$

Optimized architecture: Fully Connected Neural Network

Comprehensive hyperparameter

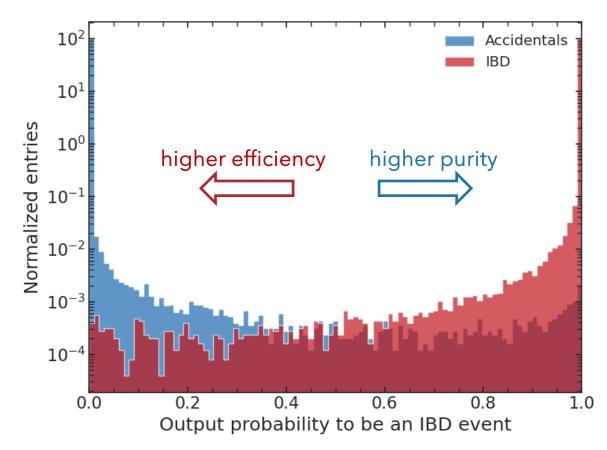
 optimization to find optimal number of
 layers, number of units in a layer, learning
 rate, etc., …



*The dataset was produced independently of the JUNO official software

NEURAL NETWORK: A TUNABLE CLASSIFIER

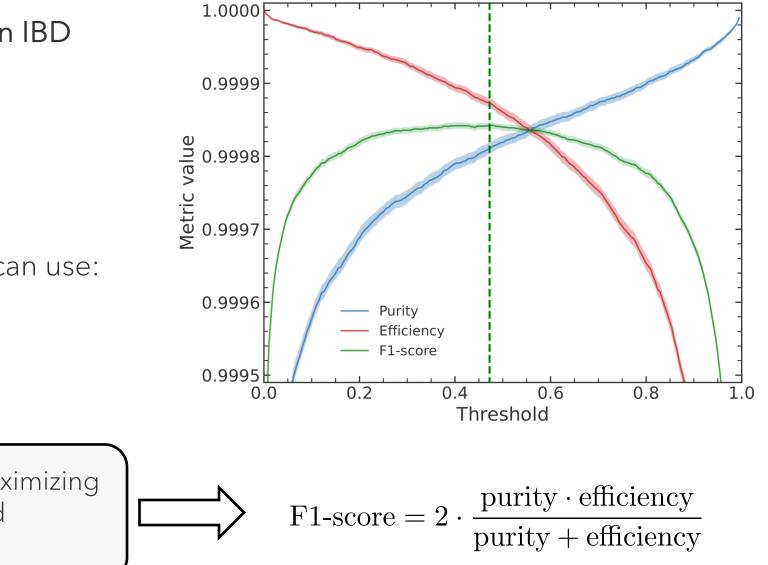
Output: confidence score to be an IBD event, from 0 to 1



NEURAL NETWORK: A TUNABLE CLASSIFIER

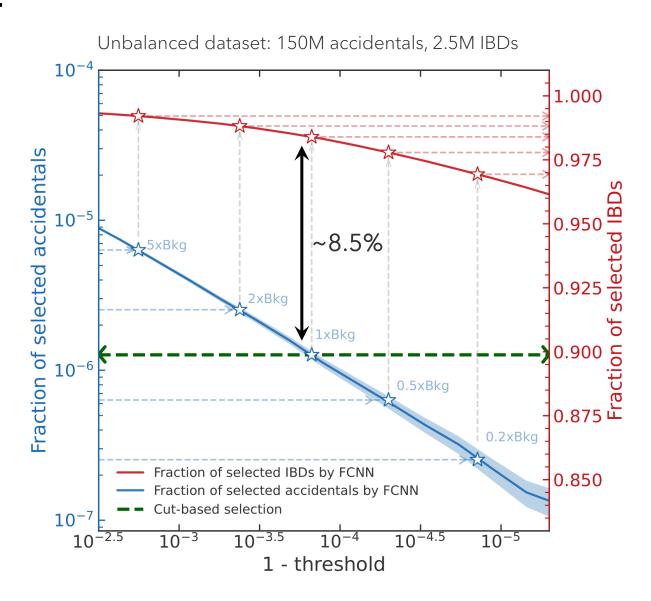
- Output: confidence score to be an IBD event, from 0 to 1
- ★ Threshold to assign a class is a tunable parameter
- **\star** For different physics channels we can use:
 - same model
 - different thresholds
 - optimize the desired metric (efficiency or purity)

Balance purity and efficiency by maximizing the *harmonic mean* of efficiency and purity: **F1-score**



NEURAL NETWORK: PERFORMANCE

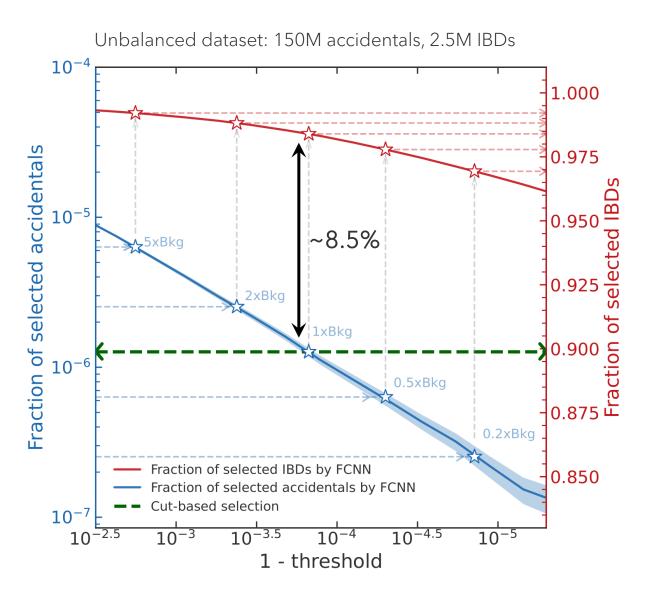
- Model can be used in the entire volume, without fiducial volume cut
- Improvement of ~8.5% points in efficiency for the same background level as for the cuts*



*The cut-based selection does not necessarily reproduce JUNO official selection

NEURAL NETWORK: PERFORMANCE

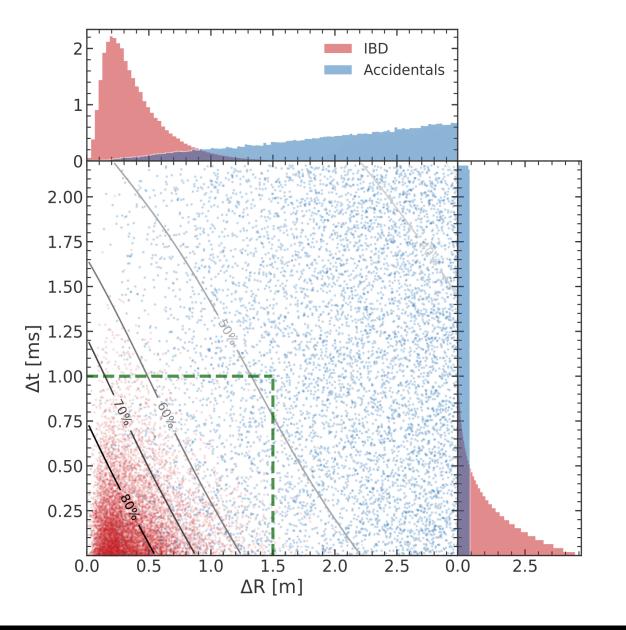
- Model can be used in the entire volume, without fiducial volume cut
- Improvement of ~8.5% points in efficiency for the same background level as for the cuts*
- ★ Background can be further decreased, keeping higher efficiency
- ★ Efficiency can be further increased, having higher residual background



*The cut-based selection does not necessarily reproduce JUNO official selection

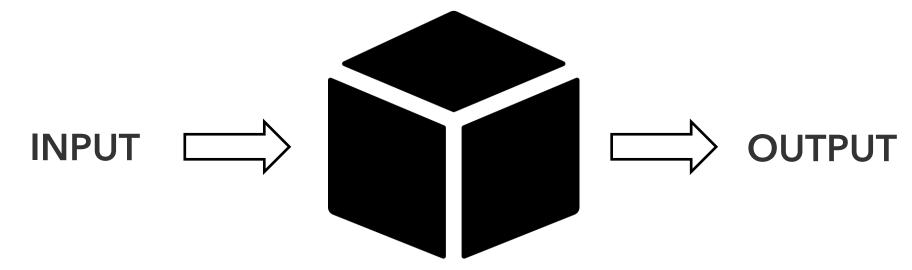
OPTIMIZATION OF IBD SELECTION CUTS

- ***** Standard ΔR and Δt cuts are **box-like**
- ★ ML model has learnt smoother decision boundary
 - Increased efficiency
 - Close-to-linear relation
 - Can be used to optimize selection criteria



INTERPRETABILITY

WHY INTERPRETABILITY?

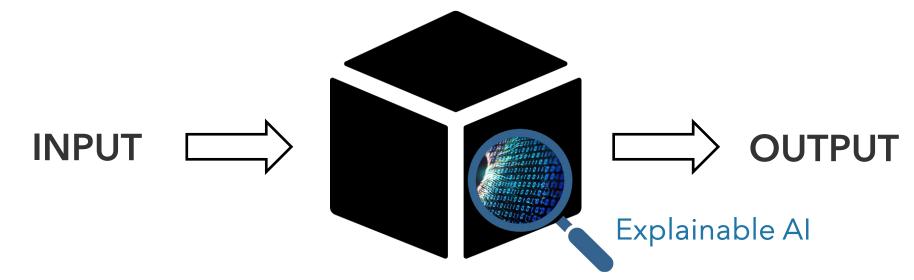


* Hard to understand how and why a neural network made a decision \rightarrow Black box

WHY INTERPRETABILITY?

- * Hard to understand how and why a neural network made a decision \rightarrow *Black box*
- * Explainable AI: methods that allow users to comprehend results created by AI algorithms

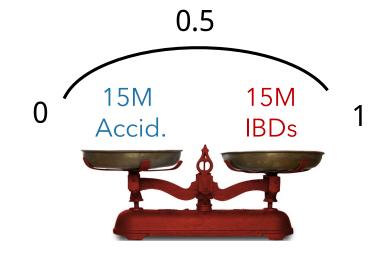
WHY INTERPRETABILITY?



- * Hard to understand how and why a neural network made a decision \rightarrow *Black box*
- * Explainable AI: methods that allow users to comprehend results created by AI algorithms
- ★ Goals:
 - Ensure trust in the model and its transparency
 - Identify features driving decision about classification
 - Optimize and fine-tune the cut-based selection strategy

INTERPRETABILITY AND SHAP VALUES

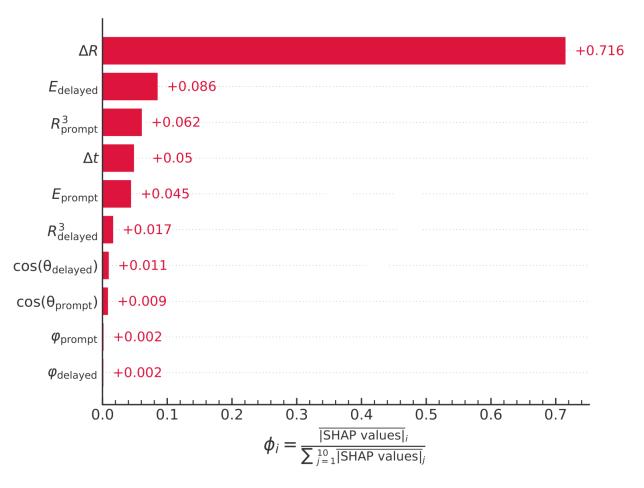
- ★ SHAP (SHapley Additive exPlanations)
 - Calculate the contribution of each feature
 - Can be positive or negative
 - Show the impact on predictions with respect to the average
- ★ Positive SHAP values → IBD class
- ★ Negative SHAP values → accidentals class



GLOBAL EXPLANATIONS

- * Global explanations: summarized impact of a specific feature
- * Most important feature is distance between prompt and delayed candidates' vertices ΔR
- Energy of delayed candidate has the next stronger discriminative power
- * R^{3}_{prompt} , $R^{3}_{delayed}$ provide additional information, especially at the edges
- * Δt in top 4 features for importance

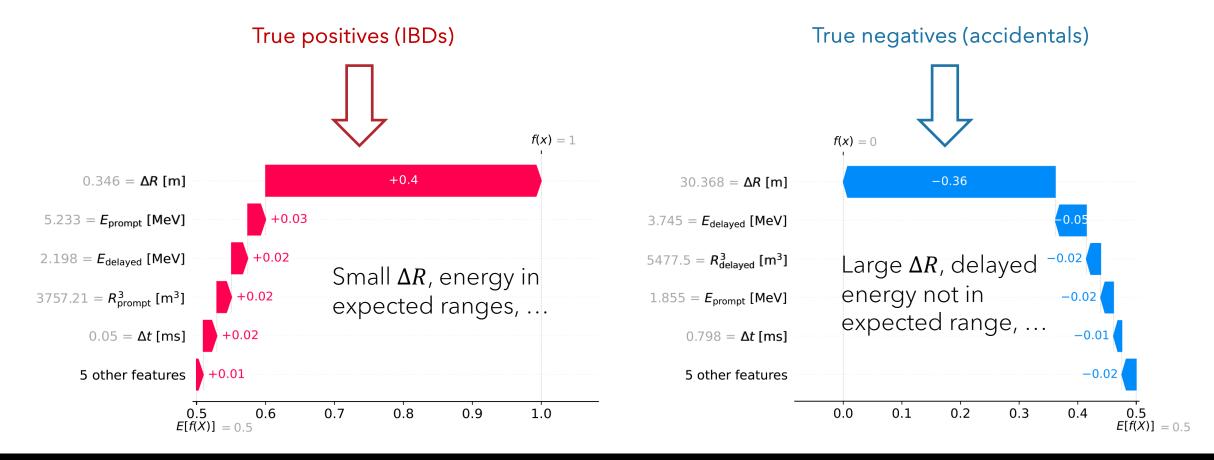
What features are the most important for the model's predictions on average?



LOCAL EXPLANATIONS - GOOD CLASSIFICATION

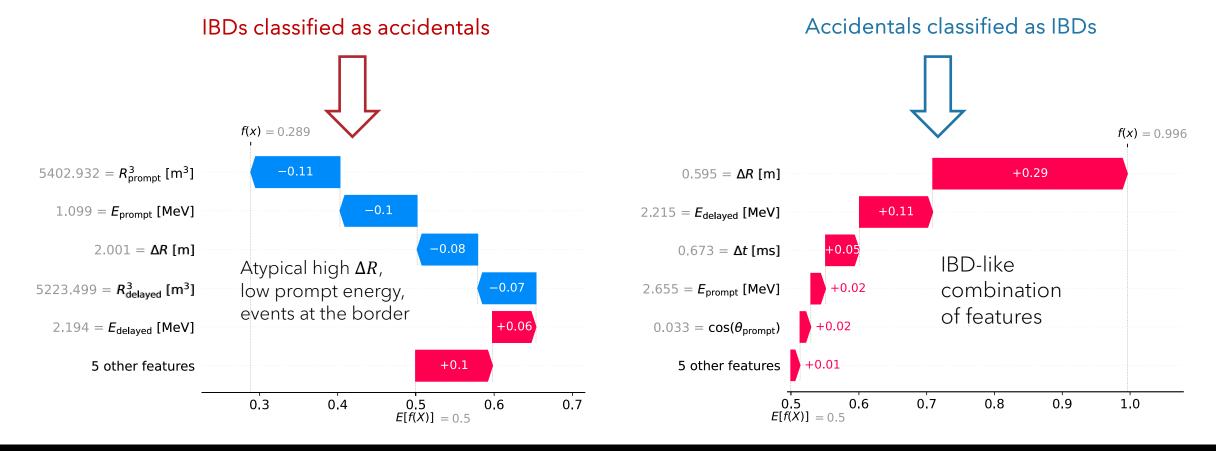
Why did the model make this prediction for this specific data point?

- ★ Local explanations focus on an individual event and provide features' importances for a specific instance
- *** Example of good classification**: typical correctly classified events



LOCAL EXPLANATIONS - MIS-CLASSIFICATION

- ★ Local explanations focus on an individual event and provide features' importances for a specific instance
- * Example of mis-classification: wrongly classified events



CONCLUSIONS

- ★ The main task of a selection algorithm is to distinguish between two classes: reactor antineutrino events and accidental coincidences (mainly from radioactivity)
- * Introduced a fully-connected **neural network** as IBD-accidentals classifier
 - Can be applied as a proxy to improve the cut-based selection
 - **Provides higher efficiency** than the cut-based selection within both fiducial volume and the entire volume
 - Provides higher efficiency for higher purity level

- ★ Interpretability analysis
 - Ensures trust in the model predictions \rightarrow *Black box*
 - Identify features driving decision about classification
 - Offers valuable insights into the model behavior

BACKUP

LS-BASED REACTOR NEUTRINO EXPERIMENTS

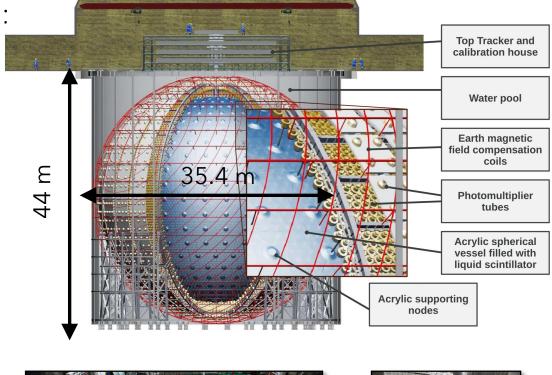
- * The medium of choice for most reactor neutrino experiments has been liquid scintillator (LS)
- * Organic liquid scintillator detectors:
 - High light yield \rightarrow energy resolution
 - Large proton abundance \rightarrow antineutrino target
 - Large volume \rightarrow compensate small cross section
 - Doping capabilities \rightarrow improve signal-background discrimination

In this talk

Experiment	Daya Bay	RENO	Double Chooz	KamLAND	JUNO	
LS mass	20 ton	16 ton	8 ton	1 kton	20 kton	
Energy resolution	8%	8%	8%	6%	3%	

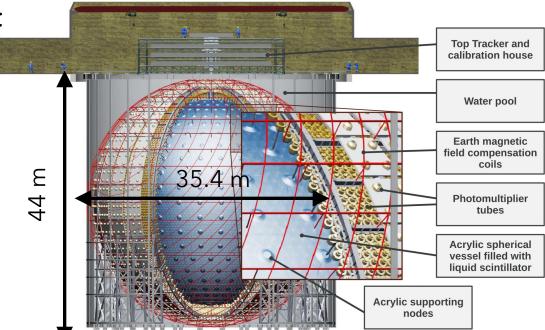
JUNO KEY EXPERIMENTAL FEATURES

- * Large statistics
 - ✓ Huge LS target mass
 - Powerful nuclear reactors



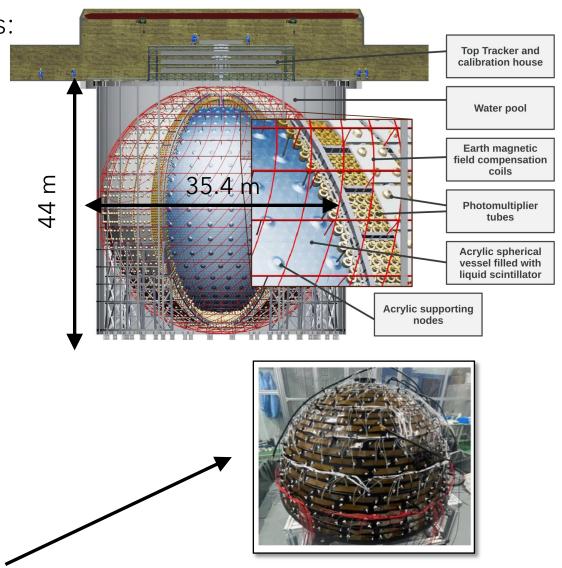
JUNO KEY EXPERIMENTAL FEATURES

- * Large statistics
 - ✓ Huge LS target mass
 - Powerful nuclear reactors
- * Energy resolution: 2.95% at 1 MeV
 - High photon yield, highly transparent LS
 - ✓ Total photo-coverage \approx 78%
- * Control of non-linear energy scale within 1%
 - Comprehensive calibration program
- * Low background
 - ✓ 650 m underground
 - LS purification system and material screening
 - Efficient veto systems



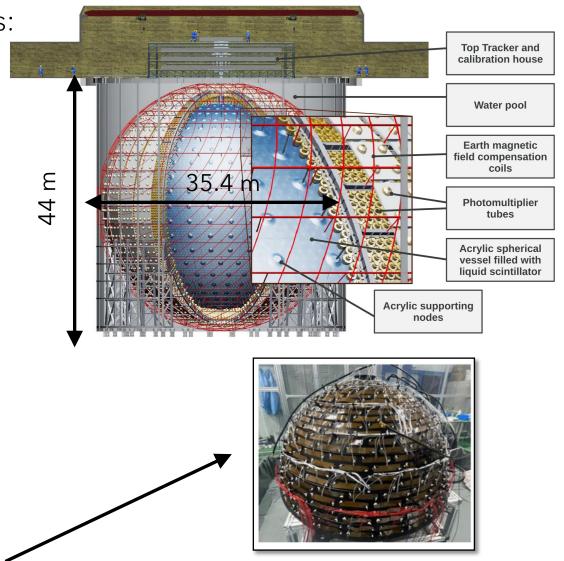
JUNO KEY EXPERIMENTAL FEATURES

- * Large statistics
 - ✓ Huge LS target mass
 - Powerful nuclear reactors
- * Energy resolution: 2.95% at 1 MeV
 - High photon yield, highly transparent LS
 - ✓ Total photo-coverage \approx 78%
- * Control of non-linear energy scale within 1%
 - Comprehensive calibration program
- * Low background
 - ✓ 650 m underground
 - LS purification system and material screening
 - Efficient veto systems
- * Accurate knowledge of reactor spectra
 - ✓ Satellite near detector: Taishan Antineutrino Observatory (TAO) at 44 m from Taishan reactor



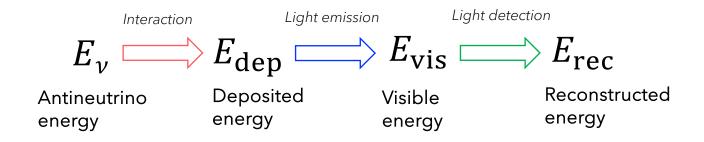
JUNO KEY EXPERIMENTAL FEATURES

- * Large statistics
 - ✓ Huge LS target mass
 - Powerful nuclear reactors
- * Energy resolution: 2.95% at 1 MeV
 - High photon yield, highly transparent LS
 - ✓ Total photo-coverage \approx 78%
- * Control of non-linear energy scale within 1%
 - Comprehensive calibration program
- * Low background
 - ✓ 650 m underground
 - LS purification system and material screening
 - Efficient veto systems
- * Accurate knowledge of reactor spectra
 - ✓ Satellite near detector: Taishan Antineutrino Observatory (TAO) at 44 m from Taishan reactor

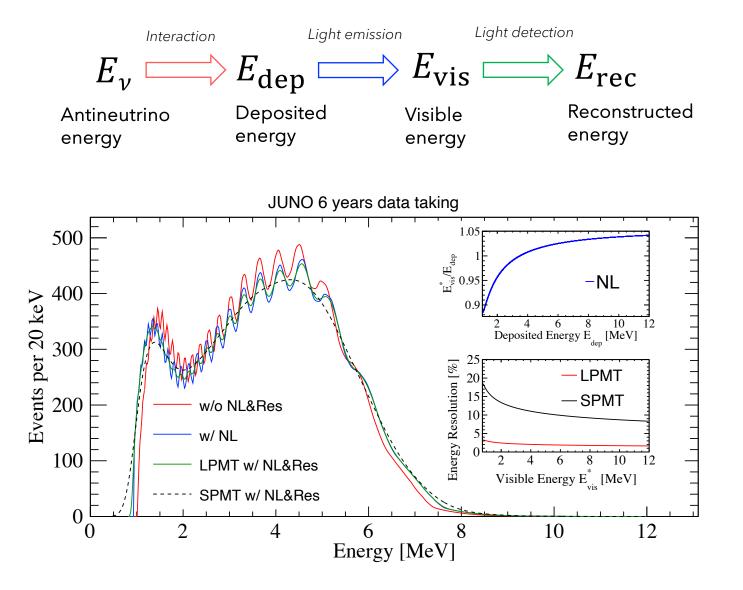


DETECTOR RESPONSE: WHAT JUNO MEASURES

Chinese Phys. C 46 123001



DETECTOR RESPONSE: WHAT JUNO MEASURES



Chinese Phys. C 46 123001

1. IBD reaction and cross section, e^+ deposited energy

 $E_{\rm dep} \simeq E_{\bar{\nu}_e} - 0.782 \,{\rm MeV}$

 Liquid scintillator non-linearity (NL), visible energy ∝ detected photoelectrons

$$E_{\rm vis} = f_{\rm LSNL}(E_{\rm dep}) \cdot E_{\rm dep}$$

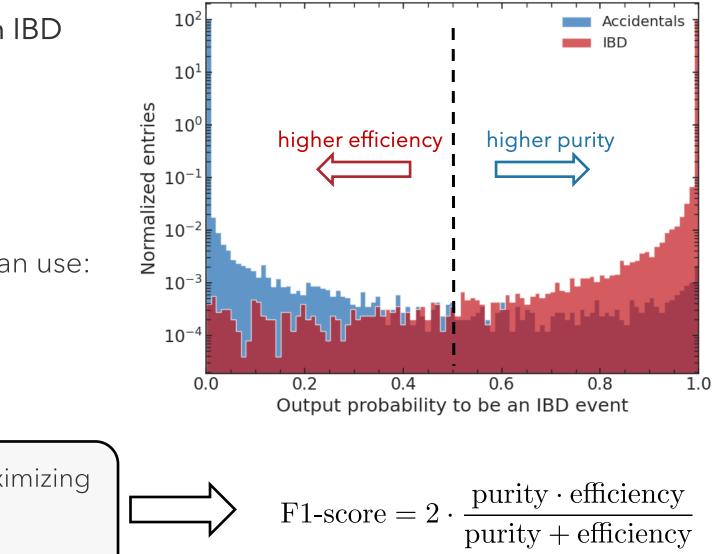
3. Energy resolution (Res)

$$\frac{\sigma_{E_{\rm rec}}}{E_{\rm vis}} = \sqrt{\left(\frac{a}{\sqrt{E_{\rm vis}}}\right)^2 + b^2 + \left(\frac{c}{E_{\rm vis}}\right)^2}$$

NEURAL NETWORK: A TUNABLE CLASSIFIER

- Output: confidence score to be an IBD event, from 0 to 1
- ★ Threshold to assign a class is a tunable parameter
- **\star** For different physics channels we can use:
 - same model
 - different thresholds
 - optimize the desired metric (efficiency or purity)

Balance purity and efficiency by maximizing the *harmonic mean* of efficiency and purity: **F1-score**



NEURAL NETWORK: HYPERPARAMETER OPTIMIZATION

Hyperparameter	Search space and selected hyperparameter
Units in input layer	[16, 256]: 96
Units in hidden layers	[16, 256]: 240
Number of hidden layers	[1, 10]: 2
Activation	ReLU, Leaky ReLU, SiLU, PReLU, Tanh
Optimizer	Adam, SGD, RMSprop
Learning rate	$[10^{-5}, 10^{-1}]: 3.5 \cdot 10^{-4}$
Scheduler type	Exponential, ReduceOnPlateau, CosineAnnealing, None
Layer weights initialization	xavier uniform, xavier normal, orthogonal , normal, uniform
Batch normalization	True, False
Batch size	[128, 2048]: 1024

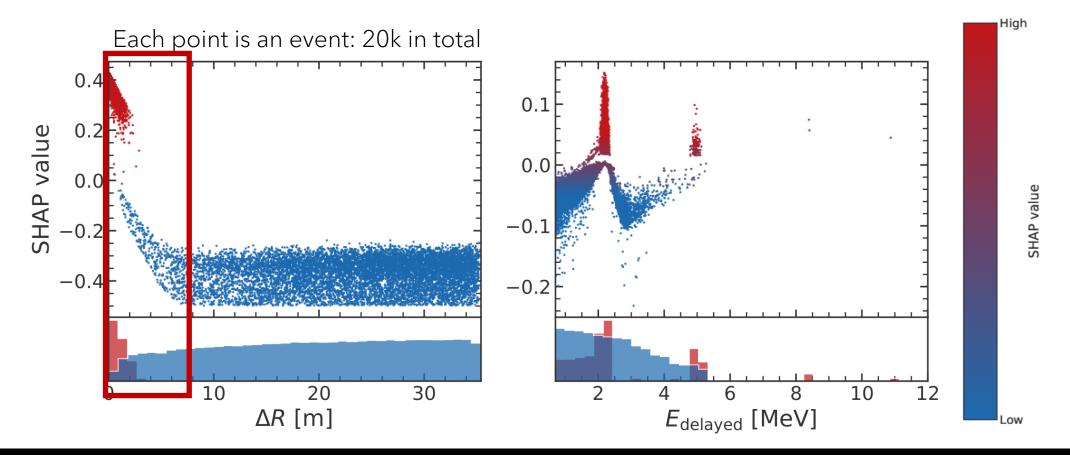
Table 1: Hyperparameter search space for FCNN. Selected hyperparameters are highlighted in bold.

NEURAL NETWORK: PERFORMANCE

Approach	Volume			Efficiency		
		0.2 imes Bkg	0.5 imes Bkg	$1 \times Bkg$	$2 \times Bkg$	$5 \times Bkg$
BDT	Full detector volume: $R < 17.7$ m	98.38%	98.81%	99.02 %	99.19%	99.39%
	R < 17.2 m	91.58%	91.62%	91.63 %	91.64%	91.64%
FCNN	Full detector volume: $R < 17.7$ m	96.94%	97.79%	98.40 %	98.82%	99.21%
	R < 17.2 m	91.53%	91.60%	91.63 %	91.64%	91.64%
Cuts	R < 17.2 m			89.90%		

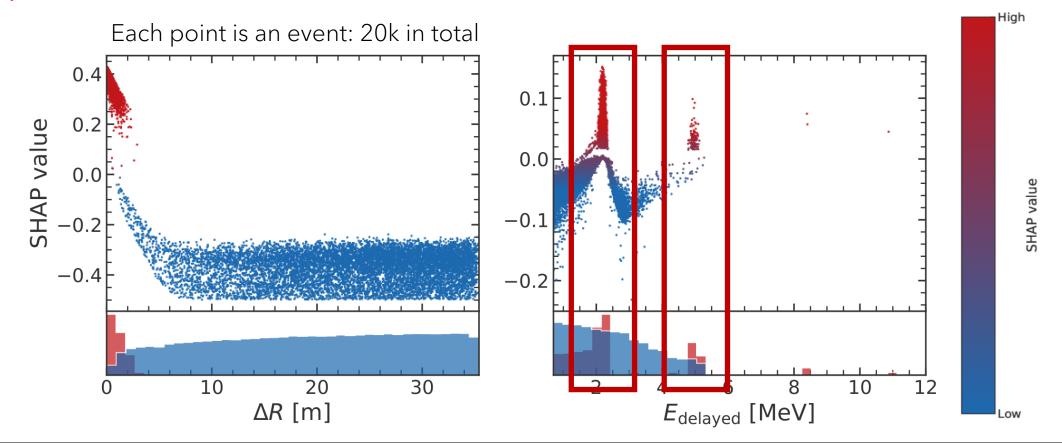
GLOBAL EXPLANATIONS FOR TOP FEATURES

- * Top-2 features distributions and SHAP values
- * Small values of ΔR are very likely related to an IBD event



GLOBAL EXPLANATIONS FOR TOP FEATURES

- ★ Top-2 features distributions and SHAP values
- * Small values of ΔR are very likely related to an IBD event
- * $E_{delayed}$ has a clustered structure related to specific isotope on which **neutron** was captured



LOCAL EXPLANATIONS - GAMMA LEAKAGE

- ★ Gamma produced by neutron capture escaping the target before depositing whole energy → gamma leakage
- f(x) = 0.976★ Both prompt and delayed events occurred outside the FV +0.28 $0.479 = \Delta R [m]$ +0.14 $0.014 = \Delta t \,[ms]$ ★ This candidate pair would be +0.08 $5522.662 = R_{delaved}^3$ [m³] discarded by cut-based selection \rightarrow low E_{delayed} and FV cut $5500.934 = R_{prompt}^3 [m^3]$ -0.07-0.06 $0.746 = E_{delaved}$ [MeV] ★ NN classifies this as an IBD event 5 other features +0.11based on the combination of 0.4 0.5 0.6 0.7 8.0 0.9 1.0 other features \rightarrow increase in E[f(X)] = 0.5efficiency 🙂

INTERPRETABILITY AND SHAP VALUES

- ★ SHAP (SHapley Additive exPlanations)
 - Calculate the contribution of each feature
 - Can be positive or negative
 - Show the impact on predictions with respect to the average
- ★ Positive SHAP values → IBD class
- ★ Negative SHAP values → accidentals class

