PALEOCCENE: COMPACT & PASSIVE NEUTRINO DETECTORS

ENABLED BY FLUORESCENCE MICROSCOPY OF COLOR CENTERS

APPLIED ANTINEUTRINO PHYSICS WORKSHOP 2024 RWTH AACHEN, OCT 29 2024

GABRIELA R. ARAUJO ON BEHALF OF PALEOCCENE

SEARCHING FOR RARE NUCLEAR RECOILS*

STATE-OF-THE ART EXPERIMENTS ARE SEEING THE FIRST "LOW-ENERGY"** CE ν NS EVENTS

1ST DETECTION OF CE_VNS FROM SOLAR (⁸B) NEUTRINOS:

 $(**)E_{y} \leq 10$ MeV, ~1 KeV threshold

BY THE XENON DARK MATTER EXPERIMENT. arxiv:2408.02877

CEvNS: COHERENT ELASTIC v-NUCLEUS SCATTERING *Either from weakly interacting massive particles (WIMPs, dark matter candidate) or CEvNS SEARCHING FOR RARE NUCLEAR RECOILS*

TRADITIONAL DETECTION TECHNIQUES ARE BASED ON THE COLLECTION OF PROMPT SCINTILLATION PHOTONS, CHARGE...

EXAMPLES: SEMICONDUCTORS, TIME PROJECTION CHAMBERS, ETC

SEARCHING FOR RARE NUCLEAR RECOILS*

slides

TRADITIONAL DETECTION TECHNIQUES ARE BASED ON THE COLLECTION OF PROMPT SCINTILLATION PHOTONS, CHARGE, AND/OR PHONONS*.

EXAMPLES: TIME PROJECTION CHAMBERS AND BOLOMETERS. IN BOTH CASES, SIGNALS ARE PROMPLY READ OUT.

THIS REQUIRES ON-SITE INSTRUMENTATIONS. DETECTORS HAVE A LARGE FOOTPRINT (& COST)

*Either from weakly interacting massive particles (WIMPs, dark matter candidate) or

NEW DETECTION TECHNIQUE: PALEOCCENE

PALEOCCENE AIMS TO DEVELOP COMPACT PASSIVE DETECTORS THAT ENABLE MONITORING OF A LARGE NUMBER OF DETECTORS

CEVNS FROM REACTOR vs : ~450 nuclear power reactors >200 research reactors. Bernstail et al arxiv:1908.07113

1ST CE_VNS DETECTION: $E_{1} \lesssim 50$ MeV, ~5 KeV threshold

REACTOR CEVNS

 $\overline{\mathbf{v}}$

 $E_{ij} \leq 8$ MeV. $E_{ND} \sim 10-100$ eV threshold

NUCLEAR SAFEGUARD

TWO MAIN CHALLENGES: DETECTORS HAVE TO BE COMPACT & STILL ACHIEVE THE NECESSARY LOW THRESHOLDS. 5

CEvNS DETECTION

TO MONITOR A LARGE NUMBER OF REACTORS, WE MAY NEED A PASSIVE DETECTOR

DETECTOR WISH LIST:

- LOW THRESHOLD
- SMALL: ALLOWS MODERATE DISTANCE TO REACTOR / OVERBURDEN
- □ NO CRYOGENICS / HV / DEDICATED STAFF ON-SITE
- □ REASONABLY **CHEAP**

$\text{CE}\nu\text{NS}$ DETECTION

PALEOCCENE: THE CONCEPT OF A PASSIVE DETECTOR THAT RECORDS CRYSTALLINE DEFECTS INDUCED BY $\text{CE}\nu\text{NS}$

DETECTOR WISH LIST:

- REASONABLY CHEAP
- SMALL: ALLOWS MODERATE DISTANCE TO REACTOR / OVERBURDEN
- NO CRYOGENICS / HV / DEDICATED STAFF ON-SITE
- LOW THRESHOLD

SIGNAL:

- LONG LIVED
- NO OR DISTINGUISHABLE RESPONSE TO γ-RAYS

FOCUS HERE: COLOR CENTER DEFECTS*

CRYSTALLINE DEFECTS INDUCED BY NUCLEAR RECOILS.

CEVNS DETECTION

PALEOCCENE: THE CONCEPT OF A PASSIVE DETECTOR THAT RECORDS COLOR CENTERS INDUCED BY $CE_{\nu}NS$ IN <u>TRANSPARENT CRYSTALS</u>

DETECTOR WISH LIST:

- REASONABLY CHEAP
- SMALL: ALLOWS MODERATE DISTANCE TO REACTOR / OVERBURDEN
- NO CRYOGENICS / HV / DEDICATED STAFF ON-SITE
- LOW THRESHOLD

SIGNAL:

LONG LIVED

v-INDUCED

NO OR DISTINGUISHABLE RESPONSE TO γ-RAYS

READOUT

- □ FAST NON-DESTRUCTIVE READ-OUT OF LARGE VOLUMES
- □ IDENTIFICATION OF LOW -ENERGY SIGNALS
- □ CAN BE PERFORMED EX-SITU OR WITH A SETUP THAT CAN BE EASILY TRANSPORTED

PASSIVE TRANSPARENT CRYSTALS OFFER A UNIQUE DETECTION CHANNEL: READOUT OF <u>CRYSTALLINE DEFECTS INDUCED BY NUCLEAR RECOILS</u>.

FOCUS HERE: COLOR CENTER DEFECTS*

8

PALEOCCENE: <u>B. Cogswell, A. Goel, P. Huber</u>

(*) <u>R. Budnik, et al (</u>2018)

THE PALEOCCENE CONCEPT

READ-OUT OF COLOR CENTERS IN PASSIVE DETECTORS USING LIGHT-SHEET FLUORESCENCE MICROSCOPY

COLOR CENTERS ABSORB AND RE-EMIT LIGHT IN <u>OPTICAL</u> WAVELENGTHS, ENABLING A <u>FAST READ-OUT</u>. PALEOCCENE: <u>B. Cogswell, A. Goel, P. Huber</u>, WHITE PAPER: <u>2203.05525</u>

THE PALEOCCENE CONCEPT READ-OUT OF COLOR CENTERS IN CRYSTALS USING LIGHT-SHEET FLUORESCENCE MICROSCOPY

COLOR CENTERS ABSORB AND RE-EMIT LIGHT IN <u>OPTICAL</u> WAVELENGTHS, ENABLING A <u>FAST READ-OUT</u>.

THE PALEOCCENE CONCEPT READ-OUT OF COLOR CENTERS IN CRYSTALS USING LIGHT-SHEET FLUORESCENCE MICROSCOPY

COLOR CENTERS ABSORB AND RE-EMIT LIGHT IN <u>OPTICAL</u> WAVELENGTHS, ENABLING A <u>FAST READ-OUT</u>.

TESTING THE PALEOCCENE CONCEPT

READ-OUT OF COLOR CENTERS IN CRYSTALS WITH

Scan speed at ~ $4 \mu m$ XYZ resolution: <10min/cm³

THE MESOSPIM

STATE-OF-THE-ART LIGHT-SHEET FLUORESCENCE MICROSCOPE THAT IMAGES CENTIMETER -SIZED SAMPLES WITHIN MINUTES.

Benchtop meso-scale SPIM

TESTING THE READOUT OF COLOR CENTERS WITH LIGHT-SHEET MICROSCOPY **TO TEST THE IMAGING METHOD, WE NEED: 1.TO SELECT CRYSTALS, UNDERSTAND THEIR FLUORESCENCE**

SPECTRA AND RESPONSE TO RADIATION

CRYSTALS STUDIED SO FAR: CaF₂ LiF and Sapphire transparent crystals Absorption and emission of LiF Neutron irradiation response of LiF ____ 0h excitation LiF2 – 100mCi AmBe 96h — 164h PLE [arb. units] _ 187h 2 ____ 212h Ę 700 750 600 wavelength (nm) Bilsky et al 400 450 500 550 600 650 750 800 850 350 700 Wavelength [nm] [mu002 Spectrometry & irradiation mostly done by P. Huber and collaborators @VTech VIRGINIA TECH 100 exposure time [hours]

TESTING THE READOUT OF COLOR CENTERS WITH LIGHT-SHEET MICROSCOPY

TO TEST THE IMAGING METHOD, WE NEED: 1.TO SELECT CRYSTALS, UNDERSTAND THEIR FLUORESCENCE SPECTRA AND RESPONSE TO RADIATION

BLANK

HOMOGENEOUS COLOR CENTER FLUORESCENCE

WE CAN QUANTIFY THE DISTRIBUTION AND INTENSITY OF FLUORESCENT FEATURES USING THE MICROSCOPE

TESTING THE READOUT OF COLOR CENTERS WITH LIGHT-SHEET MICROSCOPY

TO TEST THE IMAGING METHOD, WE NEED: 2.TO PRODUCE RESOLVABLE TRACKS IN THE CRYSTAL

<u>GAMMA-RAYS:</u> PRODUCE HOMOGENEOUS FLUORESCENCE OF THE BULK* <u>NEUTRONS:</u> PRODUCE TRACKS IN THE BULK <u>ALPHAS:</u> PRODUCE TRACKS ON THE SURFACE

 γ -<u>RAY DOSES</u>: from 100 Rad to 5 MRad: ~10¹⁰-10¹⁴ ph/cm² from a ~1 MeV ⁶⁰Co source <u>NEUTRON DOSES</u>: ~10⁸ n/cm² (100mCi AmBe source, shielded by lead) ALPHA DOSES: ~10⁶ alphas/cm² (30 Bq Am-241 source)

Spectrometry & irradiation mostly done by P. Huber and collaborators @VTech

TESTING THE READOUT OF COLOR CENTERS WITH LIGHT-SHEET MICROSCOPY TO TEST THE IMAGING METHOD, WE NEED: 3.UNDERSTAND THE MICROSCOPES' RESPONSE

Reference data is used to to understand the point spread function of the microscope, check stage reproducibility and **optimize algorithms used to identify structures & tracks.**

Examples of fitting and modelling of the point spread function.

MIMICKING SMALL STRUCTURES / SIGNALS: FLUORESCENT BEADS & QUANTUM DOTS AS CALIBRATION REFERENCES

TESTING THE READOUT OF COLOR CENTERS WITH LIGHT-SHEET MICROSCOPY TO TEST THE IMAGING METHOD, WE NEED: 4.AUTOMATIZED DATA ANALYSIS / TRACK FINDING

Step 1: A threshold-based algorithm finds tracks and mark them with a mask (shown here by the white outlines)

Step 2: A further check is performed by matching the track candidates to a repeated scan Matched track: maximum is at ~the same xyz map position but nowhere else.

SURFACE ALPHA TRACKS

IMAGING RESULTS:

PRELIMINARY SPECTRUM OF TRACK SIZES: RESULTS AGREE WITH EXPECTED VALUE

IMAGING RESULTS: LIGHT-SHEET FLUORESCENCE IMAGES OF ALPHA TRACKS IN LIF

Parts of the crystal centered at the source are very dense with tracks, but some other parts are less populated

IMAGING RESULTS: IRRADIATION OF LIF WITH THERMAL NEUTRONS PRODUCE ⁶LI FISSION TRACKS

PRFI IMINARY

TRITIUM + ALPHA: some tracks show sizes according to expected. Tritium track (~**33 um**) and alpha track (~ **6um**).

⁶Li + n -> **³H + ⁴He**

IMAGING AT at **millimeters INSIDE THE CRYSTAL**! (USUALLY NOT POSSIBLE WITH OTHER MICROSCOPY TECHNIQUES)

IRRADIATION OF LIF WITH FAST NEUTRONS PRODUCE SHORT (A FEW MICRONS) TRACKS AND SOME AMOUNT OF FISSION TRACKS CAUSED BY SLOWER NEUTRONS

IMAGING RESULTS: IRRADIATION OF LIF WITH THERMAL NEUTRONS PRODUCE ⁶LI FISSION TRACKS

TRITIUM + ALPHA: some tracks show sizes according to expected. Tritium track (~**33 um**) and alpha track (~ **6um**).

⁶Li + n -> **³H + ⁴He**

IMAGING AT at **millimeters INSIDE THE CRYSTAL**! (USUALLY NOT POSSIBLE WITH OTHER MICROSCOPY TECHNIQUES)

SUMMARY & CONCLUSIONS: PALEOCCENE IS A PROMISING CONCEPT OF SAFEGUARDS (& CE_VNS DETECTORS*): WE SUCCESSFULLY PERFORMED THE FIRST LIGHT-SHEET IMAGING OF PARTICLE-INDUCED TRACKS

- We understand the fluorescence response of LiF to gamma & neutron irradiation
- We obtained 3D imaging of tracks from fast neutrons, alphas and fission tracks
- We understand fairly well the microscope's response
- We tested / optimized a software for automatic data processing and track identification

(*) & neutron detector Stay tuned for upcoming results!

PATH FORWARD
CONCEPT PROPOSED BY COGSWELL et. al. (12. 2021)
PALEOCCENE WHITE PAPER (2022)
<u>MINERAL</u> <u>DETECTION OF</u> <u>vS & DM</u> Phys. Dark Univ. (2023)
NEW <u>MESOSPIM</u> Nat. Comm. (2024)
MINERAL DETECTION OF & DM. Proceedings (2024)
RESULTS PRESENTED HERE TO BE PUBLISHED SOON!

PAI FOCCENE FAST