

The COHERENT experiment

Janina Hakenmüller for the COHERENT collaboration

AAP 2024 Aachen, 30th of October

1/15

Coherent elastic neutrino nucleus scattering (CEvNS) at SNS

Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Tennesse, USA

COHERENT collaboration

Neutrino spectra from SNS

Pulsed proton beam with 60Hz:

- up to 1.7 MW power since this summer, $\sim 10^{20}$ protons on target/d
 - \rightarrow ~0.3 v per proton on target
- background rejection factor by beam time structure

time

a.u.

0

several types of detectors $\rightarrow N^2$ dependence

Beam-related backgrounds:

beam-related neutron (BRN) measurements:

• neutrino-induced neutrons (NINs)

Steady-state:

- cosmic ray background \rightarrow 7 m w.e. overburden
- gamma ray background from environment and hot-off gas pipe (511 keV)

CsI and LAr results

Ge-Mini analysis

Campaign-2 physics run: 6/21/23 - 8/15/23

Ge-Mini result

arXiv:2406.13806 (2024)

+30% statistical uncertainty

First CEvNS detection on germanium!

Towards precision CEvNS detection

precise measurement of neutrino flux: D₂O

- Cherenkov heavy water: charged current deuteron scattering
 → well known cross section
- great reduction on neutrino flux uncertainty: ~10% → 2% (5 SNS years)
- one module operating,
- second under construction
- charged current neutrino oxygen scattering cross section (supernova detection)

COHERENT collaboration 2021 JINST 16 P08048

COH-Ar-750 and NalvETe

- 3" PMTs with cryogenic photocathode, TPB coated reflectors → <20 keV_m threshold
 - => ~5000 CEvNS events per year, ~500 inelastic events/year
- PMT characterization and TPB coating
- working cryostat in place summer 2025

More mass!

Nal scintillating crystals (TI doped):

- since 2016: NalvE 185 kg
- \rightarrow increase to 3.4t \rightarrow **NalvETe**
- → CEvNS on Na (lighter isotope, unpaired proton probes axial vector coupling), I
- completion of modules 2025, DAQ upgrade, background studies

Charged current & neutrino-induced fission

Neutrino Cubes (Pb, Fe):

neutrino-induced neutrons on Pb

NuThor: neutrino induced fission 52 kg thorium metal

NalvE (deployed in 2016-2024)

- 185 kg NaI(TI) scint. Crystals
- charged current on I: ${}^{127}I(v_{a},e^{-}){}^{127}Xe$

 \rightarrow 5.8 σ evidence ~41% of nominal Marley prediction (with supplied GT strength)

Higher energies!

12/15

CryoCsI & Cherenkov detector

COH-CryoCsl

- doped CsI \rightarrow undoped CsI
- cryo: maximal light yield, minimal afterglow at 40 K
- ~1.4keV_n threshold in reach
- mass: 10kg concept, extension to 750kg

https://arxiv.org/abs/2311.13032

77[!]K t yield (photons/keV) DM signal (m, = 1 MeV) Counts / 10 PE / 10 kg-yr 9 8 00 15 **ν**_o CEvNS □v_. CEvNS 100 V., CEvNS Beam-related neutrons 60 Steady-state background Clark, α Mikhailik, α Lower threshold! ight Gridin, v Clark, y, 60 keV Clark, v, 122 keV 20 Park. α 20 Park, v 50 250 100 150 200 300 10^{2} 10 Temperature (K) Observed energy (PE)

Fully instrumented water Cherenkov detector

- ton-scale, high light collection, ring reconstruction
 → directional Information
- $\bullet\,\nu_{_{\rm a}}$ charged current differential cross section
- fully characterize interaction response for supernova detection

CC event sample

SNS future

- exploration of new locations
- Proton Power Upgrade (PPU) beam energy: 1.0 GeV \rightarrow 1.3 GeV, beam power: 1.4 MW \rightarrow 2.0 MW
- Second Target Station (STS) (expected completion: early 2030s)

Summary and outlook

Coherent elastic neutrino-nucleus scattering (CEvNS) at SNS (pion-decay-at-rest)

- \rightarrow coherency condition fullfilled (<50MeV)
- \rightarrow 60 Hz pulsed beam => backgroud suppression

COHERENT at SNS: detection 2017 with CsI (first ever) detection 2021 with LAr 2023 (Ge-Mini): First detection of CEvNS on germanium! rejection of null hypothesis at 3.9 sigma

upcoming:

more statistics: COH-Ar-10, GeMini; improved precision: D2O more mass: NalvETe, COH-Ar-750; lower threshold: CryoCsI else: power upgrade of SNS, Second Target Station,... inelastics campaign: argon, D₂O,...

Thank you for your attention!