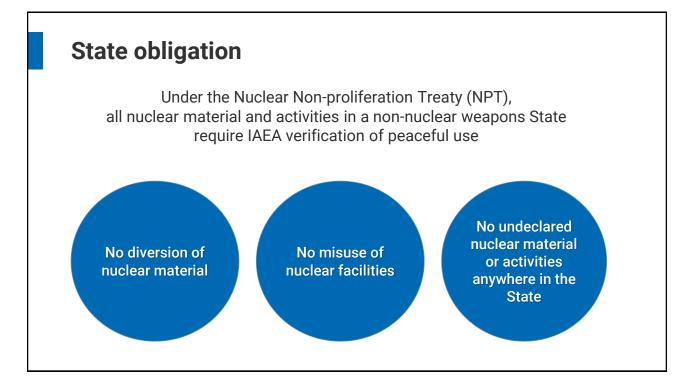
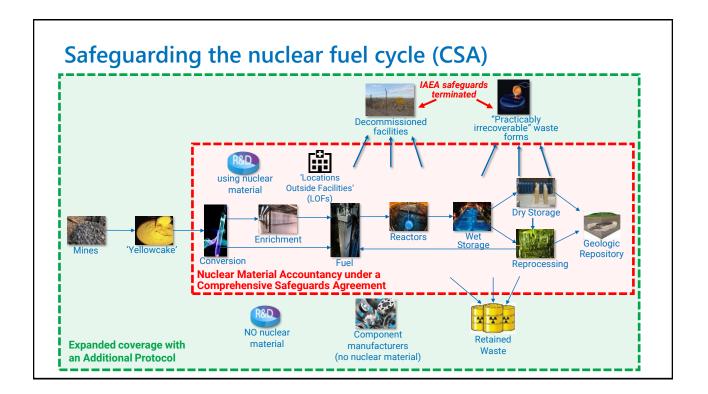
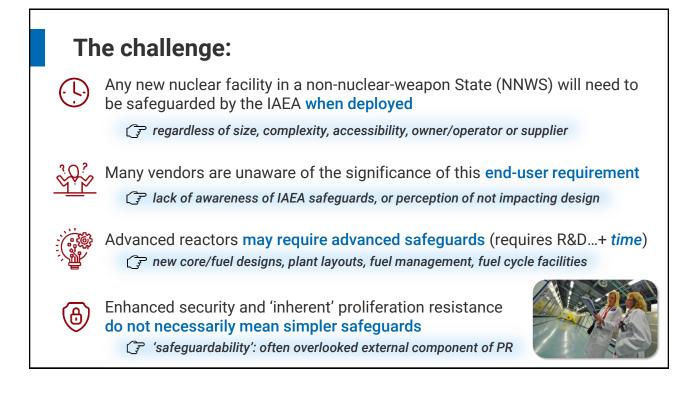

Safeguards by design:


Preparing for small modular reactors

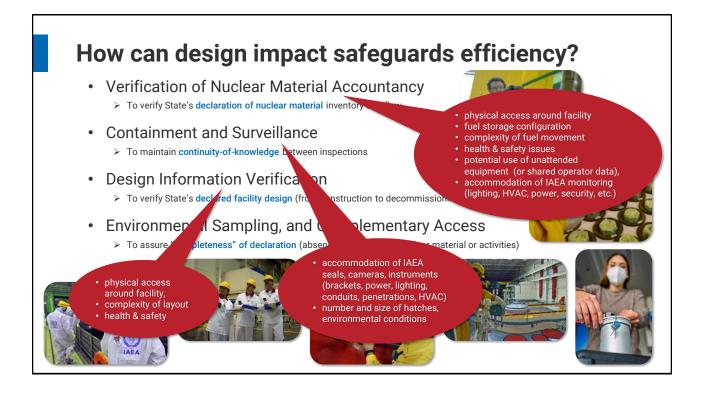

Jeremy Whitlock


Senior Technical Advisor (SBD), Dept. of Safeguards International Atomic Energy Agency J. Whitlock@iaea.org

AAP 2024 - October 30, 2024 (virtual)

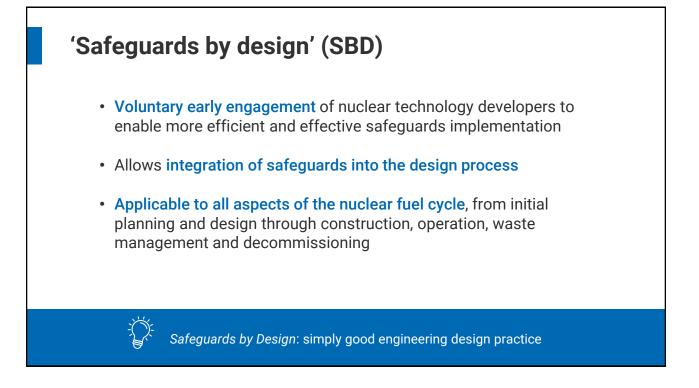
How can design impact safeguards efficiency?

- Verification of Nuclear Material Accountancy
 > To verify State's declaration of nuclear material inventory and flow
- Containment and Surveillance
 - > To maintain continuity-of-knowledge between inspections
- Design Information Verification
 > To verify State's declared facility design (from construction to decommissioning)
- Environmental Sampling, and Complementary Access
 - > To assure "completeness" of declaration (absence of undeclared nuclear material or activities)



Safeguards awareness: a new priority

SMRs, advanced reactors:


Novel technology and deployment models: need for new safeguards approaches, measures and equipment

Back-end management:

Novel processes, large volumes: preparation needed for safeguards measures and termination on waste

Safeguards challenges for SMRs		
Advanced fuels and fuel cycles	• HALEU, pyroprocessing, Th/Pu MOX,	
Advanced reactor designs	• molten salt, fast reactors, pebble bed,	
Longer operation cycles	• continuity of knowledge between refuelling, high excess reactivity of core (target accommodation)	
New supply arrangements	 factory sealed cores, transportable reactors, transnational DIV arrangements 	
New spent fuel management	 storage configurations, waste forms 	
		(cont'd)

<section-header><section-header><text><text><text><text><text><text><text><text><text><text><text>

'Safeguards by design': not a new concept

Rokkasho Reprocessing Facility, Japan:

- Unattended process monitoring and sampling systems
- Joint-use equipment

CANDU PHWR reactors:

- Unattended fuel-transfer monitoring systems
- Dry storage sealing and reverification

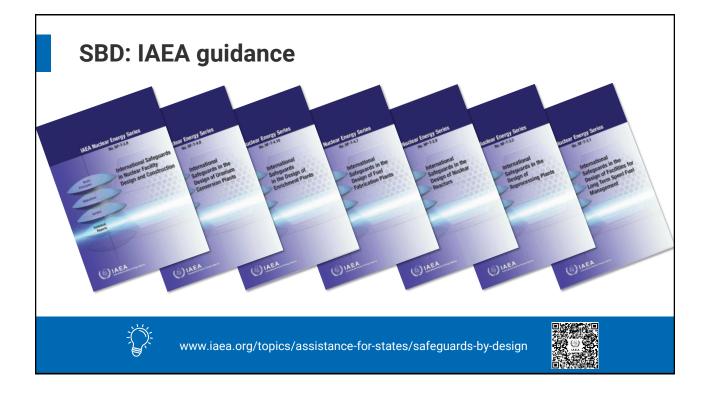
Onkalo encapsulation plant and DGR, Finland:

- Unattended fuel-transfer monitoring systems and protocols
- Joint-use equipment

... Therefore: safeguards considerations for SMRs:

- · Unattended monitoring systems and remote data transmission
- Digital connectivity for remote coverage (reliable, high bandwidth, secure)
- Safeguards seals on factory-sealed, transportable cores
- Design verification, particularly under transnational supply arrangements
- New safeguards approaches, including possibility for customized Agency or joint-use instrumentation (e.g., thermal power monitor for microreactors, process monitoring for MSRs)
- State-level issues: e.g., managing effective/efficient safeguards for a fleet of small, remote facilities
- Training for safeguards authorities in emerging nuclear energy States

New safeguards approaches need <u>time</u> to develop: Safeguards by Design (SBD) will be critical


SBD: IAEA/vendor engagement

- 'SBD for SMRs' project under Member State Support Programme (MSSP)
- MSSP tasks: Russia, RoK, US, Canada, Finland, France, China, UK, Belgium, Sweden
- Technologies include FNPP, TNPP, integral PWR, MSR, PB-HTR, LFR
- Goal is to work with Member States to:
 - evaluate design aspects that impact safeguards
 - investigate safeguards implementation strategies
 - develop internal IAEA document to inform future safeguards development

Safeguards by Design: collaborative risk management

Thank you!

Jeremy Whitlock J.Whitlock@iaea.org

Dr. Jeremy Whitlock is a Senior Technical Advisor in the Department of Safeguards at the IAEA, with three decades' experience as a scientist and manager in the Canadian and international nuclear community. Prior to moving to the IAEA in 2017 he spent 22 years at Canadian Nuclear Laboratories as a reactor physicist and manager of non-proliferation R&D.

Dr. Whitlock received a B.Sc. in Physics from the University of Waterloo (1988), and an M.Eng. and PhD in Engineering Physics (reactor physics) from McMaster University (1995).

Dr. Whitlock is a Past President, Fellow, and former Communications Director of the Canadian Nuclear Society. Since 1997 he has maintained *The Canadian Nuclear FAQ* (www.nuclearfaq.ca), a personal website of frequently-asked questions (FAQs) on Canadian nuclear technology.

Dr. Whitlock lives in Vienna, Austria, and feels that canoes are the closest humans have come to inventing a perfect machine.

J.Whitlock@iaea.org jeremyjwhitlock@gmail.com