

Applied Antineutrino Physics Workshop 2024 28th - 30th October 2024 - Aachen, Germany

The JUNO and TAO detectors and their physics potential

Davide Chiesa on behalf of the JUNO collaboration

University of Milano-Bicocca, INFN Milano Bicocca

davide.chiesa@mib.infn.it

The JUNO experiment

JUNO (Jiangmen Underground Neutrino Observatory) is a 20 kton liquid scintillator detector located ~ 650 m underground at ~ 52.5 km from two Nuclear Power Plants in China.

Construction of the JUNO detector is nearly complete and we expect to start data taking next year.

Reactor neutrino detection

In nuclear reactors, $\overline{v_e}$ are emitted from β -decays of fission fragments:

- typical flux ~ $2 \times 10^{20} \overline{v_e}/s/GW_{th}$
- most reactor $\overline{v_e}$ have energy E < 10 MeV
- > 99% of reactor $\overline{v_e}$ emissions come from fissions of four main isotopes: ²³⁵U, ²³⁹Pu, ²⁴¹Pu, ²³⁸U.
- $\overline{v_e}$ can be detected via the Inverse Beta Decay (IBD) reaction:

$$\overline{\nu_e} + p \rightarrow e^+ + n$$

- **Energy threshold:** 1.806 MeV
- Prompt visible energy:
 - $E_{vis} = E_v 0.784 \text{ MeV}$
- Time and space coincidence between prompt and delayed signal allows to reject uncorrelated background

JUNO: a multipurpose experiment

- The JUNO detector will measure neutrinos from different sources in the energy range from ~MeV to tens of GeV
- JUNO will offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics

Davide Chiesa, University of Milano-Bicocca and INFN Milano Bicocca

JUNO collaboration, Prog.Part.Nucl.Phys. 123 (2022) 103927

The JUNO primary physics goals

- Determine the Neutrino Mass Ordering (NMO)
- Measure three oscillation parameters $(\sin^2 \theta_{12}, \Delta m_{21}^2, \Delta m_{31}^2)$ with sub-percent precision

The JUNO detector

20 kton liquid scintillator (LS) detector Water Cherenkov detector in which the LS detector is submerged Plastic scintillator array on top (Top Tracker) Cal. House TT The **20 kton LS** is contained in an **Acrylic Sphere** Inner Diameter (ID): 35.4 m Cover LS Thickness: 12 cm Chimney Acrylic Sphere A Stainless Steel (SS) Structure (40.1 m ID) supports the acrylic Water SS Structure sphere via 590 connecting bars CD PMTs The light emitted by the LS is detected by **PMTs** installed on the **VETO PMTs** inner surface of the SS structure **Connecting Bars** 17612 20-inch PMTs (75.2% photocathode coverage) Supporting Legs 25600 3-inch PMTs (2.7% photocathode coverage) The **Water pool** is filled with 35 kton of ultrapure water ID: 43.5 m, Height: 44 m 2400 20-inch PMTs installed on the outer surface of the SS structure Davide Chiesa, University of Milano-Bicocca and INFN Milano Bicocca

The JUNO detector construction

SS structure built from bottom to top

Then, acrylic sphere built from top to bottom, layer by layer

Davide Chiesa, University of Milano-Bicocca and INFN Milano Bicocca

Production and testing done for all PMTs, installation close to completion

20-inch PMTs (large) 3-inch PMTs (small)

The JUNO key challenges

- 1. Large statistics
 - > huge scintillator mass (~ 1.5×10^{33} target protons)
 - > nuclear reactor power: $26.6 \text{ GW}_{\text{th}}$ (6 reactors 2.9 GW_{th} each at Yangjiang + 2 reactors 4.6 GW_{th} each at Taishan)
- 2. Energy resolution: 2.95% @ 1MeVarXiv:2405.17860

Uncertainty on the intrinsically non-linear energy scale: $\leq 1\%$

- 3. Low background:
 - underground laboratory
 - > scintillator purification system
 - material screening to meet the requirements for Th/U/K contaminations:

 $< 10^{-15} {\rm g/g}$ in LS and $< 10^{-12} {\rm g/g}$ in acrylic

- > veto systems (Top Tracker, Water Cherenkov detector)
- 4. Knowledge of unoscillated reactor spectra

Expected $\overline{v_e}$ spectrum at JUNO

JUNO

9

Top panel:

- Energy spectra in both the NO and IO scenarios without any statistical or systematic fluctuations
- The background spectra in the main figure are stacked on top of each other

Bottom panel:

Relative contribution to the $\Delta \chi^2$ obtained when fitting the IO spectrum with the NO hypothesis.

The most sensitive region for JUNO's NMO determination is in the visible energy range from 1.5 to 3 MeV

A 3σ median sensitivity to reject the wrong mass ordering hypothesis can be reached with an exposure of about 6.5 years \times 26.6 GW thermal power

arxiv:2405.18008

Davide Chiesa, University of Milano-Bicocca and INFN Milano Bicocca

The TAO experiment

TAO (<u>Taishan Antineutrino Observatory</u>) is a satellite experiment of JUNO consisting of a ton-level liquid scintillator detector:

- positioned at 44 m from the core of the Taishan-1 reactor and at 217 m from Taishan-2;
- will measure the $\overline{v_e}$ spectrum with unprecedented energy resolution (better than 2% at 1 MeV);
- will observe ~1000 IBDs/day in the fiducial volume.

The main goals and physics potential of TAO are:

- provide a reference spectrum for JUNO;
- benchmark for future reactor neutrino experiments and nuclear databases (fine structures observation);
- measurement of isotopic IBD yields with larger sampled range of fission fractions;
- light sterile neutrino searches;
- increase the reliability and verify the technology for reactor monitoring.

TAO at the Taishan NPP

- Taishan Nuclear Power Plant has two cores currently in operation (other two cores might be built later)
- Both reactors are European Pressurised Reactor (EPR) with 4.6 GW_{th} thermal power
- Taishan-1 reached first criticality and was connected to the grid in June 2018

 \rightarrow the first running EPR in the world!

- The TAO detector will be installed in a basement at 9.6 m underground, outside of the concrete containment shell of the reactor core
 - >99.99% signal from Taishan-1+Taishan-2
 - 4% signal from Taishan-2
- Muon rate and cosmogenic neutron rate are measured to be 1/3 of those on the ground

The TAO detector

- 2.8 ton Gadolinium-doped Liquid Scintillator (Gd-LS) filled in a spherical acrylic vessel of 1.8 m in inner diameter (ID).
- Scintillation and Cherenkov light is detected by 4024 Silicon Photomultipliers (SiPM) 5.08 cm × 5.08 cm each, covering ~ 10 m² with 50% photon detection efficiency.
- SiPM tiles on the inner surface of a spherical copper shell (ID = 1.882 m)
- Cylindric stainless steel tank (OD = 2.1 m, H = 2.2 m) filled with Linear Alkylbenzene (LAB) as buffer liquid to shield the radioactivity, stabilize the temperature, and optically couple acrylic and SiPMs.
- SS tank is insulated with 20 cm thick Polyurethane (PU) to operate at -50° C \rightarrow reduce the dark noise of SiPMs to $\sim 100 \text{ Hz/mm}^2$.
- The central detector is surrounded by:
 - 1.2 m thick water tanks on the sides
 - 1 m High Density Polyethylene (HDPE) on the top
 - 10 cm lead at the bottom

to shield the ambient radioactivity and cosmogenic neutrons.

 Muon veto system: water tank instrumented with PMTs + plastic scintillator array on top

IBD detection and event selection in TAO

Overall detection

efficiency $\sim 50\%$

Inverse beta decay (IBD) in LS with 0.1% Gd-loading:

- 87% neutron captures by Gd (and 13% by hydrogen)
- Average capture time by Gd is about 30 µs

Event selection:

- ► Fiducial volume cut: 25 cm from the LS boundary to reduce energy leakage and mitigate backgrounds → 1 ton fiducial mass
- Delayed energy cut: $7 \text{ MeV} < E_d < 9 \text{ MeV}$ to reduce background rate by one order of magnitude
- Prompt energy cut: $E_p > 0.9 \text{ MeV}$
- Prompt-delayed time coincidence cut: $1 \mu s < \Delta t < 100 \mu s$

	Efficiency
Captures by Gd	87%
Delayed energy cut	59%
Prompt energy cut	99.8%
Time coincidence cut	97%

Davide Chiesa, University of Milano-Bicocca and INFN Milano Bicocca

TAO energy resolution

	JUNO	ΤΑΟ
Coverage	~ 75%	~ 94%
Photon detection efficiency	~ 30%	> 50%
Attenuation length	> 20 m (R = 17.2 m)	> 20 m (R = 0.9 m)
Photoelectron yield	~ 1665 PE/MeV	~ 4500 PE/MeV
Energy resolution	2.95% @ 1 MeV	~ 2% @ 1 MeV

Non-stochastic effects affecting energy resolution in TAO:

- at low energies, the contribution from the LS quenching effect might be quite large;
- at high energies, the smearing from neutron recoil of IBD becomes dominant.

In most of the energy region of interest, the energy resolution of TAO will be sub-percent!

TAO expected signal and background

Signal spectrum:
$$S(E_{\nu}) = \frac{N_{p}\epsilon\sigma(E_{\nu})}{4\pi L^{2}}\phi(E_{\nu})$$

- The signal spectrum is shown w/ and w/o applying energy leakage, liquid scintillator non-linearity (LSNL), and energy resolution effects.
- TAO backgrounds will be directly measured exploiting the reactor-off data (about one month per year)

Type	Rate $[day^{-1}]$
Signal	1000
Fast neutron	86
$^{9}\mathrm{Li}/^{8}\mathrm{He}$	54
Accidental	190

Shape uncertainty of TAO spectrum

- Statistical uncertainty: $\sim 1\%$ in the energy range 2 5 MeV (20 keV bin width)
- Systematic uncertainties are not negligible at low/high energies, but are $\sim 1\%$ in the central energy range 2 5 MeV

Fine structure measurement

- The reactor $\overline{v_e}$ spectrum is composed of spectra from thousands of beta decay branches.
- The end point of each $\overline{v_e}$ spectrum has a sharp edge (Coulomb correction), which produces a percent-level fine structure.
- Thanks to its excellent energy resolution, TAO will uncover the fine structures of reactor $\overline{v_e}$ spectrum for the first time.
- The TAO measurement will provide a benchmark to test nuclear databases, comparing the experimental data with the predictions of the summation method.

Plot taken from A. A. Sonzogni, M. Nino, and E. A. McCutchan, <u>Phys. Rev. C 98, 014323</u> (2018)

17

Conclusions

- JUNO detector is in an advanced construction status and is expected to start data taking next year.
- > JUNO has a rich physics program in particle and astroparticle physics.
- Main goal: identification of NMO and precise measurement of oscillation parameters thanks to its unprecedented energy resolution.
- TAO 1:1 prototype has been successfully tested at IHEP and, after disassembling and re-installation in Taishan, will start data taking next year.
- TAO will provide a high-resolution reference reactor spectrum for JUNO NMO analysis, but also precious experimental data to be used as benchmark for the modelling of reactor antineutrino spectrum.

