

DSNB search in the Gd-loaded Super-Kamiokande detector

Rudolph Rogly - Laboratoire Leprince-Ringuet (CNRS/École Polytechnique) Applied Antineutrino Physics Workshop 2024

NUCLÉAIRE **& PARTICULES**

The Super-Kamiokande experiment

- Super-Kamiokande is a multi-purpose Cherenkov-based experiment with:
 - Reconstruction of vertex, direction, energy of impinging particles.
 - → Multi-channel read-out of the Cherenkov signal of interacting particles, with ~11k PMTs.
 - ➡ Wide energy range (from MeV to TeV) and various sources (e.g. human-made, astrophysical...).

 $\approx 40 \text{ m}$

Diffuse Supernova Neutrino Background

Core-Collapse Supernova (CCSN)

- Death of massive stars ($M \gtrsim 8 M_{\odot}$), where ~99% of the energy (~10⁵⁹ MeV) is released via the emission of neutrinos and antineutrinos of all flavors (~10 MeV/ ν).
- Supernova neutrinos first detected in 1987 (Kamiokande II, IMB et Baksan), from SN1987A in the Large Magellanic Cloud.
- ... but transient events every once in a while in the galaxy: **~1-3/century**.

Study the integrated flux of supernova neutrinos originating from all CCSN events in the history of the universe, so-called <u>Diffuse Supernova Neutrino Background</u>.

DSNB flux prediction

Rich phenomenology:

- Star formation rate,
- Black hole fraction,
- Neutrino oscillation in the stars,
- Exotic neutrino properties, e.g. neutrino decay,
- Supernova explosion mechanism,
- History of the universe.

SN neutrino emission spectrum

Redshift-dependent SN rate

Universe expansion

DSNB events at SK

DSNB search in the Gd-loaded Super-Kamiokande detector

Rudolph Rogly - AAP Workshop 2024

• SK sensitive to the electronic antineutrino part of the DSNB via the Inverse Beta Decay channel:

DSNB events at SK

DSNB search in the Gd-loaded Super-Kamiokande detector

Rudolph Rogly - AAP Workshop 2024

• SK sensitive to the electronic antineutrino part of the DSNB via the Inverse Beta Decay channel:

	SK-IV (pure water)	SK-VI (0.01% Gd)	SK-VII (0.03% Gd)
n-capture on Gd	0 %	50 %	75 %
Time constant	~210 µs	~115 µs	~65 µs

5

DSNB events at SK

DSNB search in the Gd-loaded Super-Kamiokande detector

Rudolph Rogly - AAP Workshop 2024

• SK sensitive to the electronic antineutrino part of the DSNB via the **I**nverse **B**eta **D**ecay channel:

	SK-IV (pure water)	SK-VI (0.01% Gd)	SK-VII (0.03% Gd)
n-capture on Gd	0 %	50 %	75 %
Time constant	~210 µs	~115 µs	~65 µs
n-detection efficiency	~25%	~40%	~60%

BDT & Neural Net

6

Background events at SK

<u>Observables</u>: e^+ rec. energy E_{e^+} , rec. Cherenkov angle θ_C and number of tagged neutrons *n*

- <u>Reactor $\bar{\nu}_e$:</u>
 - Irreducible and a dominant background below ~10 MeV.
- Spallation-induced:
 - From cosmic muons going through SK (~2 Hz) : dominant background in the low energy end of the analysis window.
- <u>Atmospheric *v* Charged-Current (CC)</u>
- <u>Atmospheric *v* Neutral-Current (NC)</u>

DSNB search in the Gd-loaded Super-Kamiokande detector

Rudolph Rogly - AAP Workshop 2024

Data reduction

Set of cuts applied on **ancillary observables** to bring the S/B closer to 1:

- <u>1st reduction cuts</u>: Noise reduction, events quality, fiducial volume cuts in particular
- 2nd reduction cuts: Removal of spallation events, neutron clouds, i.e. events correlated in space & time with a parent cosmic ray muon.
- <u>*3rd reduction cuts*</u>: Remove atmospheric neutrino background events: e.g. pion-likeness cut, decay electron cut, and newly introduced single-cone likeness cut (aka MSG cut).

DSNB search in the Gd-loaded Super-Kamiokande detector

Rudolph Rogly - AAP Workshop 2024

DSNB analysis - Spectral Fit

Principle

<u>Shape-driven analysis</u>: Fit DSNB + 5 background contents to the data,

via Extended Maximum Likelihood Framework.

- Define 3 Cherenkov angle (θ_C) regions
 - Low θ_C : Mostly **CC** events
 - *High* θ_C : Mostly **NC** events
 - *Medium* θ_C : **Signal** & **backgrounds** (**CC** & **Spallation** _ events)
- Define 2 N_{tagged n}-dependent region:
 - **IBD-like** events ($N_{\text{tagged }n} = 1$) _
 - **Non IBD-like** events ($N_{\text{tagged }n} \neq 1$) —

DSNB search in the Gd-loaded Super-

DSNB analysis - Spectral Fit results

Fitted spectra

DSNB analysis - Spectral Fit results

Likelihoods

Combined (stat. + sys.) $\approx 2.3 \sigma$ excess

Rudolph Rogly - AAP Workshop 2024

DSNB search in the Gd-loaded Super-Kamiokande detector

DSNB analysis - Spectral Fit results

Significances

Iváñez-Ballesteros+22 ($\tau/m = 10^{11}$ s/eV, SH, NH) Iváñez-Ballesteros+22 ($\tau/m = 10^{10}$ s/eV, SH, NH) Iváñez-Ballesteros+22 ($\tau/m = 10^9$ s/eV, SH, NH) Iváñez-Ballesteros+22 (No decay, SH, NH) Iváñez-Ballesteros+22 ($\tau/m = 10^{11}$ s/eV, SH, IH) Iváñez-Ballesteros+22 ($\tau/m = 10^{10}$ s/eV, SH, IH) Iváñez-Ballesteros+22 ($\tau/m = 10^9$ s/eV, SH, IH) Iváñez-Ballesteros+22 (No decay, SH, IH) de Gouvêa+20 (NH) Barranco+17 (ACDM, Logotropic) Priya+17 (NH) Horiuchi+21 Hartmann+97 CE Tabrizi+20 (NH) Nakazato+15 (min, NH) Nakazato+15 (max, IH) Malaney+97 CGI Kaplinghat+00 HMA (max) Kresse+20 (Fiducial, IH) Kresse+20 (Low, IH) Kresse+20 (High, IH) Kresse+20 (Fiducial, NH) Kresse+20 (Low, NH) Kresse+20 (High, NH) Kawasaki+03 Horiuchi+09 (6 MeV, max) Horiuchi+18 $\xi_{2.5} = 0.5$ Horiuchi+18 $\xi_{2.5} = 0.1$ Galais+09 (NH) Galais+09 (IH) Lunardini09 Failed SN Totani+96 Constant Ando+03 (updated 05)

DSNB analysis - Binned Analysis

Principle

- No input DSNB model in this analysis.
- Look at the excess per bin observed wrt. background prediction in the signal region (medium $\theta_C \& N_{\text{tagged } n} = 1$).
- CLs approach to derive bin-by-bin upper limits.

DSNB analysis - Binned Analysis results

Upper Limits

- Poor sensitivity in the very low energy region, mostly due to spallation-induced background.
- From 17.3 MeV in neutrino energy (16 MeV in positron energy), upper limits approach the range of DSNB predictions.

DSNB analysis - Binned Analysis results

Upper Limits

- Poor sensitivity in the very low energy region, mostly due to spallation-induced background.
- From 17.3 MeV in neutrino energy (16 MeV in positron energy), upper limits approach the range of DSNB predictions.
- Sensitivity studies on the total SK-Gd era show potential to constrain the models with the upcoming data.

Conclusion

- DSNB is an exciting probe to study supernovae and neutrino properties.
- The Gd-era of the SK experiment went successful in improving the sensitivity to the DSNB signal.
 - \blacktriangleright Rejection of the background-only hypothesis at the 2.3 σ level across all SK phases.
 - \blacksquare Stringent upper limits, for neutrino energy > 17.3 MeV approaching the range of predictions.
- Looking forward to approaching evidence for DSNB in the upcoming years!

16

MSG Cut

DSNB/NC events separation

Rudolph Rogly - AAP Workshop 2024

DSNB search in the Gd-loaded Super-Kamiokande detector

DSNB signal efficiency

