

Antineutrinos in the SNO+ Experiment

Will Parker on behalf of the SNO+ Collaboration

1

SNG The SNO+ Experiment OF OXFORD

More info in: JINST 16 P08059 (2021) https://doi.org/10.1088/1748-0221/16/08/P08059 Will Parker, for the SNO+ Collaboration

Will Parker, for the SNO+ Collaboration

SNO Antineutrino Sources: Reactors

- Sensitive to Δm^2_{21} and $heta_{12}$
- Energy resolution allows spectral features to be resolved
- Current **1.5** σ -tension between solar (6.1^{+0.95}_{-0.81} × 10⁻⁵ eV²) and reactor (7.53^{+0.18}_{-0.18} × 10⁻⁵ eV²) measurements of Δm^2_{21}
- Remaining flux from ~100 cores in the USA

UNIVERSITY OF

4

SNO Antineutrino Sources: Reactors

- Reactor antineutrino flux from β decay of **4 isotopes**: ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- These isotopes have different fission fractions in three modelled reactor types
- PHWRs have continuous refuelling, and modelled with daily power information
- PWR/BWRs modelled with monthly power information
- Combine thermal power outputs with average energy emitted per fission to calculate antineutrino flux

Reactor Antineutrino Flux Uncertainties

	Source	Uncertainty		
	Emission Spectrum	2.4%		
	IESO vs. IAEA Power	1.0%		
	Fission Fraction	0.6%		
	Reaction Power	0.5%		
	Target Protons	0.5%		
	IBD Cross Section	0.4%		
	Spent Fuel	0.3%		
	Non-equilibrium	0.2%		
	Energy/Fission	0.2%		
	Fixed θ ₁₃	0.14%		
	Total	2.8%		
Will Parker, for the SNO+ Collaboration				

Fission Fractions 235 241Pu 238 239PU PHWR/ 1% 52% 5% 42% CANDU **PWR** & 57% 8% 30% 6% **BWR**

AAP 2024

5

SNO Antineutrino Sources: Geoneutrinos

- Produced by radioactive decay of ²³⁸U, ²³²Th and ⁴⁰K in the Earth's crust and mantle
- Indistinguishable from reactor antineutrinos
- Flux depends on local geology and geological model introducing large uncertainties
 - Simulated using Mid-Q model, but with no prior constraints (other than U/Th ratio)
- SNO+ will make first measurement of geoneutrino flux in the Western Hemisphere
- Oscillations averaged to a survival probability of 0.55

SNO Antineutrino Detection

- Antineutrinos inverse beta decay on hydrogen nuclei
- Produce coincidence of events, powerful for rejecting backgrounds
- Prompt positron energy: $E_{e^+}=E_{\nu}-0.8~{\rm MeV}$
- Delayed neutron capture: $E_{\gamma} = 2.2 \text{ MeV}$
- $\Delta T \approx 200 \mu s$ between prompt and delay events

Selection Criteria

Prompt Energy	0.9 < E < 8.0 MeV	
Delay Energy	1.85 < E < 2.5 MeV	
Delta T	< 2 ms	
Delta R	< 2.5 m	

Figure from:

Design and Development of JUNO Event Data Model. Chinese Physics C. 41. 10.1088/1674-1137/41/6/066201.

(α, n) **Background**

- *α* particles from ²¹⁰Po decays in detector medium, capture on ¹³C inside the detector, mimicking the IBD coincidence signal
- Three possible prompt events:

SNC

- 1. Neutron recoils on protons
- 2. Neutron scatters off a $^{12}\mathrm{C}$
- 3. Excited ¹⁶O produced which deexcites
- Main background to antineutrino IBDs
- ²¹⁰Po decay rate constantly monitored

Figures from:

Measurement of Reactor Antineutrino Oscillation with SNO+, A. Zummo, https://repository.upenn.edu/handle/20.500.14332/60242

Will Parker, for the SNO+ Collaboration

Tagged Events

59 tagged coincidences in 134.5 days livetime

9

Will Parker, for the SNO+ Collaboration

SNG

UNIVERSITY OF

Fit Results

- Fit reactor, geoneutrino, and background PDF normalisations simultaneously with systematics and oscillation parameters
- Plot for unconstrained Δm^2_{21} and $heta_{12}$
- SNO+ data compatible with global oscillation parameters

	Reactor IBD	Geoneutrino IBD	(a,n)	Data	
Fitted Counts	27.5 +/- 0.9	$11.1^{+7.1}_{-6.6}$	$17.2^{+4.5}_{-4.4}$	59	
External constraints	+/- 3%	+/- 30% U/ Th ratio	30% O 100% O*		

	SNO+ Only	SNO+ with PDG2021
$\Delta m_{21}^2 (\times 10^{-5} eV^2)$	$7.96^{+0.48}_{-0.42}$	$7.58^{+0.18}_{-0.17}$
$\theta_{12}(^0)$	52^{+10}_{-24}	33.7 ± 0.8
Geoneutrino Flux at SNOLAB (TNU)	73^{+47}_{-43}	64 ± 44

- (α, n) prompt events deposit energy over a slightly longer time than IBD prompt events
- Scintillation timing is also different for β s and protons
 - β timing calibrated using in-situ ²¹⁴Bi and ²¹⁴Po decay pairs
 - Proton timing to be calibrated with ²⁴¹Am-⁹Be source
- Results in a different pulse shape that can be used to distinguish (α, n) from IBD events

- Pulse shapes also correlated with energy and radial position, in different ways for βs and protons
- Likelihood ratio would not capture this with PDFs averaged over E and R
- Instead use Fisher
 Discriminant
 - Finds projection vector that best separates

 (α, n) from IBDs
- Tune on (α, n) and IBD simulation

Will Parker, for the SNO+ Collaboration

AAP 2024

JNIVERSITY OF

• Cuts out 90% of (α, n) , sacrifices 11% geoneutrinos, 6% reactor antineutrinos

• Performance independent of oscillation parameters

Will Parker, for the SNO+ Collaboration

Pre-Classifier

SNQ

Pre-Classifier

SNQ

With Classifier

Will Parker, for the SNO+ Collaboration

SNO Future Prospects

- In **3 years**, SNO+ is expected to match KamLAND precision on Δm_{21}^2 , driven largely by classifying (α , n) events
- (α, n) classifier drastically reduces impact of (α, n) events on Geoneutrino flux measurement
- Δm_{21}^2 measurement also significantly improved by (α, n) classifier

Summary

- SNO+ is filled with liquid scintillator and taking physics data
- Measured $\Delta m^2_{21} = 7.58^{+0.18}_{-0.17} \times 10^{-5} \text{ eV}^2$, $\theta_{12} = 33.7 \pm 0.8^{\circ}$,

Geoneutrino Flux = 64 ± 44 TNU, using PDG prior constraints

- Second measurement of Δm^2_{21} from reactor antineutrinos
- First measurement of geoneutrino flux in North America
- Precision will improve with more data!
 - In **3 years**, SNO+ is expected to match KamLAND precision on Δm^2_{21}
 - Antineutrino analyses will continue through the tellurium phase

SNQ

Will Parker, for the SNO+ Collaboration

Backups

SNG (α, n) **Classifier: Asimov Fits UNIVERSITY OF OXFORD**

Pre-Classifier

With Classifier

SNG Delay Energy Spectrum

Will Parker, for the SNO+ Collaboration

SNG Prompt Energy Spectrum

SNQ Sensitivity in $sin^2(2\theta_{12})$

Will Parker, for the SNO+ Collaboration

SNO Physics Program

Search for $0\nu\beta\beta$ in ¹³⁰Te

Solar Neutrinos

Reactor Anti-Neutrinos

UNIVERSITY OF

OXFORD

Geo-Neutrinos

Supernova Neutrinos

Invisible Nucleon Decay

Will Parker, for the SNO+ Collaboration

Primary Fluor:

2.2 g/l concentration Avoid self-absorption in LAB Improves light yield

Double Beta Isotope:

High natural abundance Affordable and scalable Q value 2.527 MeV TeDiol soluble in LAB

Anti Oxidant:

Improves stability Improves optical purity

LAB + PPO + bis-MSB + Te-ButaneDiol + BHT + DDA

Scintillator:

High light yield Good transparency Compatible with Acrylic Affordable

Secondary Fluor:

Shifts wavelength to PMT peak efficiency **Reduces self-absorption** Intrinsic light yield unaffected

Amine:

~15% concentration Improves stability Increases light yield

Will Parker, for the SNO+ Collaboration

$0\nu\beta\beta$ Analyses

All backgrounds on target for world leading $0\nu\beta\beta$ sensitivity

SNQ

SNG $0\nu\beta\beta$ Future Sensitivities $\tilde{\nu}$ oxford

- SNO+ scalable with higher loading of Te
 - Stable and high light yield at several percent loading
 - Cost relatively low (<\$2m per ton)

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \left\langle m_{\beta\beta} \right\rangle^2 \times |M_{0\nu}|^2 \times G_{0\nu}$$

$$\left\langle m_{\beta\beta}\right\rangle = |\sum_{i} m_{i} U_{ei}^{2}|$$

