Latest results from KamLAND-Zen

The search for neutrinoless double beta decay $(0\nu\beta\beta)$ with the complete dataset

Applied Antineutrino Physics (AAP) | Kelly Weerman | Oct. 28th - 30th 2024

o double ber

$$2\boldsymbol{\nu}\boldsymbol{\beta}\boldsymbol{\beta}: \ (A,Z) \to (A,Z+2) + 2e^{-} + 2\boldsymbol{\nu}_{e} \quad 0\boldsymbol{\nu}\boldsymbol{\beta}\boldsymbol{\beta} \quad (T_{1/2}^{0\nu})^{-1} \propto \langle m_{\beta\beta} \rangle^{2}$$

Majorana ($\nu = \overline{\nu}$) relevant for

- Neutrino mass via the seesaw mechanism
- Matter-antimatter asymmetry via leptogenesis

 $2\nu\beta\beta$ exceptionally slow nuclear process, $T_{1/2} \sim 10^{18-24}$ years

Expected signal for neutrinoless double beta decay

Most stringent limit on $0\nu\beta\beta$ in **xenon** from KamLAND-Zen: $T_{1/2} > 3.8 \times 10^{26}$ years

KamLAND Collaboration

General purpose detector

Solar neutrinos

Geo and reactor neutrinos

Accelerator neutrinos

Astrophysical neutrinos

Neutrinoless double beta decay

Kamioka Liquid Scintillator Antineutrino Detector

Cylindrical tank, ø18m

• 3.2kt pure water

Kamioka Liquid Scintillator Antineutrino Detector

Kamioka Liquid Scintillator Antineutrino Detector

Inner detector

- ~ 1300 17-inch PMTs
- ~ 550 20-inch PMTs

KamLAND-Zen: Zero Neutrino Double Beta

Inner Balloon Xe-LS

Zen 400 (Oct. 2011 - Oct. 2015)

Phase I: PRL 110 (2013): 0625023 Phase II: PRL 117.8 (2016): 082503

Zen 800 (Feb. 2019 - Jan. 2024)

First dataset: PRL 130.5 (2023): 051801 Complete: arXiv preprint 2406.11438

First \rightarrow Complete dataset

Livetime 523 \rightarrow 1131 days Exposure 0.97 \rightarrow 2.1 ton yr ¹³⁶Xe $^{136}_{54}$ Xe $\rightarrow ~^{136}_{56}$ Ba + 2e⁻

Xe-LS balloon, ø3.8m, 24t

- 3.13% enriched xenon
 - → 745 kg Xe
- 90.85% ¹³⁶Xe

 $Q_{\beta\beta} = 2.458 \text{ MeV}$

Dominant backgrounds for the $0\nu\beta\beta$ search

 \succ 2 $\nu\beta\beta$ decay

Dominant backgrounds for the $0\nu\beta\beta$ search

- \succ 2*ν*ββ decay
- ► Radioactive Impurities (RI)
 - → In Xe-LS: ²³²Th (97.9±0.5%) &
 ²³⁸U (99.95±0.03%) tagging effiency

→ External

Dominated by ²³⁸U because delayed coincidence ²¹⁴Bi(β) – ²¹⁴Po(α) efficiency ~50% due to absorption of α on non-scintillating IB

9

Dominant backgrounds for the $0\nu\beta\beta$ search

- \succ 2*ν*ββ decay
- ➤ Radioactive Impurities (RI)
 - → In Xe-LS: ²³²Th (97.9±0.5%) &
 ²³⁸U (99.95±0.03%) tagging effiency
 - → External: IB material
- ➤ Muon spallation products
 - → Short-lived: carbon spallation products dominated by ⁶He, ⁸Li, ¹⁰C, ¹²B
 - → Long-lived: xenon spallation

9

Long-lived isotope production from carbon spallation

Long-lived isotope production from xenon spallation

Muon spallation on xenon results in long-lived isotopes $T_{1/2} \sim (\text{sec} - \text{months})$

Events selected within analysis volume (r < 2.5m):

- Muons & 2ms after muons rejected
- $\bar{\nu}$ rejected with inverse- β decay coincidence cut
- Short-lived spallation coincidence & shower cut

Events selected within analysis volume (r < 2.5m):

- Muons & 2ms after muons rejected
- $\bar{\nu}$ rejected with inverse- β decay coincidence cut
- Short-lived spallation coincidence & shower cut
- RI rejected with BiPo coincidence and FV

Events selected within analysis volume (r < 2.5m):

- Muons & 2ms after muons rejected
- $\bar{\nu}$ rejected with inverse- β decay coincidence cut
- Short-lived spallation coincidence & shower cut
- RI rejected with BiPo coincidence and FV

Events selected within analysis volume (r < 2.5m):

- Muons & 2ms after muons rejected
- $\bar{\nu}$ rejected with inverse- β decay coincidence cut
- Short-lived spallation coincidence & shower cut
- RI rejected with BiPo coincidence and FV

Fitting procedure:

- 40 equal volume bins within r < 2.5m
- Energy bins ∈ (0.5–4.8) MeV | ROI (2.35–2.70) MeV

Simultaneous fit of Long-Lived likelihood tagged (LD) data and $0\nu\beta\beta$ selected events (SD) to constrain LD rate

$$\succ$$
 2 $\nu\beta\beta$ decay

- \succ 2*ν*ββ decay
- ➤ Radioactive contamination

- $\succ 2\nu\beta\beta$ decay
- ➤ Radioactive contamination
- Cosmogenic spallation products

- ➤ Radioactive contamination
- Cosmogenic spallation products

Implications for the neutrino mass ordering

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q,Z) \underbrace{|M_{0\nu}|^2}_{\checkmark} \langle m_{\beta\beta} \rangle^2 \longrightarrow \langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^3 U_{ei}^2 m_i \right|$$

Nuclear Matrix Element
$$T_{1/2}^{0\nu} > 3.8 \ge 10^{26} \text{ yr}$$
$$(m_{\beta\beta}) < (28 - 122) \text{ meV}$$
$$m_{\nu 1} > m_{\nu 3}$$
$$m_{\nu 3} > m_{\nu 1}$$

Mod. Phys. Lett. A (2012): 1230009

Upgrade to KamLAND2-Zen

Last physics run on August $27^{\text{th}} 2024 \rightarrow \text{dismantling of detector started}$

KamLAND2-Zen construction timeline

KamLAND dismantling

2024

- \checkmark Xe & LS extraction
 - \rightarrow LS extraction
 - \rightarrow Dismantling OB & PMTs

2027

The bottom of the water tank

KamLAND-Zen is searching for $0\nu\beta\beta$ with ¹³⁶Xe dissolved in liquid scintillator

▷ Current most stringent limit of is $T_{1/2} > 3.8 \ge 10^{26} \text{ yr} \rightarrow m_{\beta\beta} < (28 - 122) \text{meV}$

The detector upgrade of KamLAND to KamLAND2 has started

- ➤ Scintillating inner balloon
- ➤ Improved energy resolution
- ➤ New electronics for enhanced tagging efficiency

KamLAND2-Zen aims to cover the IO region | target sensitivity $\langle m_{\beta\beta} \rangle = 20 \text{ meV}$ KamLAND2 dismantling & constrution ongoing \rightarrow expected launch in 2027!

Thank you for your attention!

Follow me for fun videos & comics on KamLAND

← physicswithkelly ♥ : 17 5.792 43 posts followers following

Kelly Weerman Scientist

Experimental particle physics PhD student working on the KamLAND detector in Japan $\mathbf{s} \ll \mathbf{s}$

© PHYSICSWITHKELLY

Kelly Weerman

Experimental particle physics PhD student working on the KamLAND detector in Japan 🕵 🧩 🔆

Backup slides

KamLAND-Zen $0\nu\beta\beta$ half-life and mass limits

Majorana mass expectation from the KamLAND-Zen halflife limit using different nuclear matrix elements

	$M^{0 u}$	$\langle m_{etaeta} angle~({ m meV})$
	2.28, 2.45	59.4, 55.3
Shell model	1.63,1.76	$83.1,\ 77.0$
	2.39	56.7
	1.55	87.4
QRPA	2.91	46.6
	2.71	50.0
	1.11, 1.18	122,115
	3.38	40.1
	4.20	32.3
EDF theory	4.77	28.4
	4.24	32.0
IBM	3.25	41.7
IDM	3.40	39.9

Confidence limits

KamLAND-Zen 800 only: $T_{1/2} > 3.4 \ge 10^{26} \text{ yr}$

Combined Zen 400 + 800: $T_{1/2} > 3.8 \ge 10^{26} \text{ yr}$

	Dataset	Exposure	T _{1/2} (90% C.L.)
KamLAND-Zen 400	Phase I	85.9 kg yr	1.9 x 10 ²⁵ yr
	+ Phase II	504 kg yr	1.07 x 10 ²⁶ yr
KamLAND-Zen 800	First dataset	970 kg yr	2.3 x 10 ²⁶ yr
	Complete dataset	2097 kg yr	3.8 x 10 ²⁶ yr

Majorana neutrino mass prediction

Dark shaded regions: predictions based on bestfit values of neutrino oscillation parameters **Light shaded regions**: 3σ ranges from oscillation parameter uncertainties.

NME calculations:

Shell model \rightarrow dot-dashed lines QRPA \rightarrow dotted lines EDF theory \rightarrow solid lines IBM \rightarrow dashed lines

Three theoretical predictions in IO regio: A, B, C

KamLAND-Zen $0\nu\beta\beta$ confidence limits

<u>Frequentist confidence limit (Wilks')</u>: $T_{1/2}^{0\nu\beta\beta} > 3.4 \times 10^{26} \text{yr} (90 \% \text{ C} \text{ . L}.)$

 $\frac{\text{Frequentist Feldman-Cousins calculation result:}}{T_{1/2}^{0\nu\beta\beta} > 4.3 \times 10^{26} \text{yr} (90 \% \text{ C} \text{ . L.})}$

Combined KLZ 400 + 800 Analysis (Wilks') $T_{1/2}^{0\nu\beta\beta} > 3.8 \times 10^{26} \text{yr} (90 \% \text{ C} \cdot \text{L}.)$

 $\frac{\text{Bayesian result:}}{T_{1/2}^{0\nu\beta\beta}} > 3.4 \times 10^{26} \text{yr} \ (90 \% \text{ C} . \text{ I.})$

Experimental design criteria for $0\nu\beta\beta$

Direct searches: kinematic parameters of the two electrons

→ Total energy and individual electron paths

$$T_{1/2}^{0\nu} = \ln 2 \frac{N_A}{W} \left(\frac{\underline{a} \cdot \epsilon \cdot \underline{M}}{N_{\text{obs}}} \right) t \quad \propto \begin{cases} a\epsilon \cdot Mt \\ a\epsilon \sqrt{\frac{Mt}{N_{\text{bkg}} \cdot \Delta E}} \end{cases}$$

ΔE

N_{bkg}

Detector and isotope choice depending on:

- High isotopic abundance a
- Deployment in large quantity M
- High-resolution detector
- Low-background conditions

Different isotope choices for detecting $0\nu\beta\beta$

Isotope	Abundance (%)	$Q_{\beta\beta}$ (MeV)	$G^{2\nu}$ (10 ⁻¹⁸ year ⁻¹)
⁴⁸ Ca	0.187	4.263	15.6
⁷⁶ Ge	7.8	2.039	0.0482
⁸² Se	9.2	2.998	1.60
⁹⁶ Zr	2.8	3.348	7.83
¹⁰⁰ Mo	9.6	3.035	4.13
¹¹⁶ Cd	7.6	2.813	3.18
¹³⁰ Te	34.08	2.527	1.53
¹³⁶ Xe	8.9	2.459	1.43
¹⁵⁰ Nd	5.6	3.371	36.4

Isotope	$G^{0\nu}$	$Q_{\beta\beta}$	Nat. ab.
	$(10^{-14} \text{ y}^{-1})$	(keV)	(%)
^{48}Ca	6.35	4273.7	0.187
76 Ge	0.623	2039.1	7.8
^{82}Se	2.70	2995.5	9.2
^{96}Zr	5.63	3347.7	2.8
^{100}Mo	4.36	3035.0	9.6
^{110}Pd	1.40	2004.0	11.8
¹¹⁶ Cd	4.62	2809.1	7.6
^{124}Sn	2.55	2287.7	5.6
$^{130}\mathrm{Te}$	4.09	2530.3	34.5
136 Xe	4.31	2461.9	8.9
^{150}Nd	19.2	3367.3	5.6

⁷⁶Ge ¹³⁶Xe ¹³⁰Te ¹⁰⁰Mo ⁸²Se

KamLAND-Zen Singles- and LL-spectrum

Singles data: $0\nu\beta\beta$ candidates

Long-lived data: LL-candidates | 10% of SD

Radioactive background: ²³²Th decay series

$0\nu\beta\beta$ detector limits

Agostini, Matteo, et al. Rev. Mod. Phys. 95, 025002 (2023)

Xenon spallation FLUKA simulations

FLUKA simulation geometry setup → 9yr detector livetime

IVERSITY

FLUKA simulated muon spallation isotopes in KamLAND-Zen Xe-LS

TABLE IX. Simulated production rate of dominant isotopes in $2.35 \le E \le 2.70$ MeV in Xe-LS.

			$(kton day)^{-1}$	
	$\tau_{1/2}(s)$	O(MeV)	ROI	Total
88V	$\frac{71/2}{9212 \times 10^6}$	$3.62 (EC/\beta^+ \gamma)$	0.110	0.136
$90m^{1}$ Zr	8.092×10^{-1}	2.31 (IT)	0.012	0.093
⁹⁰ Nb	5.256×10^4	$6.11 (EC/\beta^+ \gamma)$	0.024	0.095
^{96}Tc	3.698×10^{5}	$2.97 (EC/\beta^+ \gamma)$	0.012	0.059
⁹⁸ Rh	5.232×10^{2}	$5.06 (EC/\beta^+ \gamma)$	0.011	0.076
100 Rh	7.488×10^4	$3.63 (EC/\beta^+\gamma)$	0.088	0.234
^{104}Ag	4.152×10^{3}	$4.28 \left(\text{EC} / \beta^+ \gamma \right)$	0.012	0.160
$^{104m1}\mathrm{Ag}$	2.010×10^3	$4.28 \left(\text{EC} / \beta^+ \gamma \right)$	0.018	0.111
¹⁰⁷ In	1.944×10^3	$3.43 (EC/\beta^+\gamma)$	0.019	0.135
108 In	3.480×10^3	5.16 $(EC/\beta^+\gamma)$	0.089	0.194
110 In	$1.771 imes 10^4$	$3.89 (EC/\beta^+\gamma)$	0.053	0.236
110m1 In	4.146×10^3	$3.89 (EC/\beta^+\gamma)$	0.066	0.351
$^{109}\mathrm{Sn}$	1.080×10^3	$3.85 (EC/\beta^+\gamma)$	0.027	0.122
$^{113}\mathrm{Sb}$	4.002×10^2	$3.92 \left(\text{EC} / \beta^+ \gamma \right)$	0.036	0.231
$^{114}\mathrm{Sb}$	2.094×10^2	5.88 $(EC/\beta^+\gamma)$	0.020	0.297
$^{115}\mathrm{Sb}$	1.926×10^3	$3.03 (EC/\beta^+\gamma)$	0.031	0.839
$^{116}\mathrm{Sb}$	9.480×10^2	4.71 $(EC/\beta^+\gamma)$	0.071	0.939
$^{118}\mathrm{Sb}$	2.160×10^2	$3.66 (EC/\beta^+\gamma)$	0.165	1.288
$^{124}\mathrm{Sb}$	$5.201 imes 10^6$	$2.90 (EC/\beta^-\gamma)$	0.016	0.054
$^{115}\mathrm{Te}$	3.480×10^2	$4.64 (EC/\beta^+\gamma)$	0.012	0.124
$^{117}\mathrm{Te}$	3.720×10^3	$3.54 (EC/\beta^+ \gamma)$	0.052	0.594
^{119}I	1.146×10^3	$3.51 (EC/\beta^+\gamma)$	0.053	0.533
^{120}I	4.896×10^3	5.62 $(EC/\beta^+\gamma)$	0.091	0.953
^{122}I	2.178×10^2	$4.23 \left(\text{EC} / \beta^+ \gamma \right)$	0.289	1.965
^{124}I	3.608×10^5	$3.16 (EC/\beta^+\gamma)$	0.190	1.654
^{130}I	$4.450 imes 10^4$	$2.95(\beta^-\gamma)$	0.195	1.188
^{132}I	8.262×10^3	$3.58(\beta^-\gamma)$	0.148	0.427
^{134}I	3.150×10^3	$4.18(\beta^-\gamma)$	0.043	0.183
$^{121}\mathrm{Xe}$	2.406×10^3	$3.75 \left(\text{EC} / \beta^+ \gamma \right)$	0.100	0.540
^{125}Cs	2.802×10^3	$3.09 \left(\text{EC} / \beta^+ \gamma \right)$	0.012	0.266
^{126}Cs	9.840×10^1	$4.82 \left(\text{EC} / \beta^+ \gamma \right)$	0.011	0.080
^{128}Cs	2.196×10^2	$3.93 \left(\text{EC} / \beta^+ \gamma \right)$	0.031	0.229